4.7 Article

Enhanced field emission properties from graphene-TiO2/DLC nanocomposite films prepared by ultraviolet-light assisted electrochemical deposition

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 686, Issue -, Pages 588-592

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2016.06.084

Keywords

Graphene; TiO2; Diamond-like carbon film; Electrochemical deposition; Ultraviolet light; Field emission

Funding

  1. Natural Science Foundation of China [51105186]

Ask authors/readers for more resources

The graphene-TiO2/diamond-like carbon (G-TiO2/DLC) nanocomposite films were prepared on silicon substrates by a simple ultraviolet (UV) light assisted electrochemical deposition process using N, N-dimethylformamide (DMF) as carbon source and TiO2 nanoparticles/graphene sheets as incorporated reagents. The results show that the TiO2 and graphene sheets are uniformly dispersed into the DLC matrix. The UV-light illumination not only affects the morphology of the films, but also promotes the field emission properties, probably due to the effect of photoinduced electron-hole pairs produced from TiO2. The G-TiO2/DLC film exhibits the lowestturn-on field of 5.2 V/mu m and the highest current density of 2950 mu A/cm(2) at the electric field of 8.2 V/mu m. This enhancement of field emission properties are investigated based on the surface morphology of the self-assembled nanostructures, the improved conductivity, together with the reduced work function. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available