4.7 Article

Effects of alloying elements and temperature on the elastic properties of W-based alloys by first-principles calculations

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 671, Issue -, Pages 267-275

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2016.02.018

Keywords

First-principles calculations; Tungsten-based alloys; Elastic properties; Quasi-static approach; Electronic structure

Funding

  1. U.S. Army Research Laboratory [W911NF-08-2-0084]
  2. National Science Foundation [ACI-1053575]
  3. Materials Simulation Center
  4. Institute for CyberScience

Ask authors/readers for more resources

The influence of various transition alloying elements (X's) on the elastic properties of W-based alloys has been studied via first-principles calculations on the basis of density functional theory. Here, nineteen transition metal alloying elements (X) are considered: Ti, V, Cr, Fe, Co, Ni, Y, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, Re, Os, Ir, and Pt. It is found that (i) the bulk modulus of the dilute W-X alloy decreases with increasing its equilibrium volume, particularly, for the alloying elements in the same period; (ii) all of the alloying elements decrease the shear modulus of BCC W; and (iii) the largest decrease of elastic properties of W is due to alloying element Y. In addition, it is shown that the changes of elastic properties of W caused by the alloying elements are traceable from the electron charge density distribution, resulting in a bonding distortion between W and the alloying atoms. Using the quasi-static approach based on the Debye model, the elastic properties of these W-X alloys at finite temperatures are predicted. Calculated properties of BCC W and the W-X alloys are in favorable agreement with available experimental measurements. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Metallurgy & Metallurgical Engineering

Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys

Jiang You, Cheng Wang, Shun-Li Shang, Yipeng Gao, Hong Ju, Hong Ning, Yi Wang, Hui-Yuan Wang, Zi-Kui Liu

Summary: Tailoring phase formation in alloys to achieve desired mechanical properties, especially for complicated multi-phase alloys, is a long-sought goal. The nucleation of competitive crystalline phases during solidification depends on the nature of the liquid. In this study, ab initio molecular dynamics simulations were used to reveal the liquid configuration of Mg-Al-Ca alloys and its effect on the transformation of Ca-containing Laves phase from Al 2 Ca to Mg 2 Ca with increasing Ca/Al ratio ( r Ca / Al ).

JOURNAL OF MAGNESIUM AND ALLOYS (2023)

Article Materials Science, Multidisciplinary

Properties and hardening behavior of equal channel angular extrusion processed Mg-Al binary alloys

Xiangyu Sun, Dung-Yi Wu, Minju Kang, K. T. Ramesh, Laszlo J. Kecskes

Summary: This study examined the competition between precipitation and grain-size refinement during equal channel angular extrusion (ECAE), and validated the utility of ECAE in high-strength Mg alloy engineering.

MATERIALS CHARACTERIZATION (2023)

Article Nanoscience & Nanotechnology

An additively manufactured ?-based high Nb-TiAl composite via coherent interface regulation

Hui Xue, Yongfeng Liang, Hui Peng, Yanli Wang, Shun-Li Shang, Zi-Kui Liu, Junpin Lin

Summary: In this study, a microstructural modification technique was used to improve the plasticity and interfacial cohesion of TiAl alloys by introducing Ti5Si3 and Ti2AlN precipitates using additive manufacturing techniques.

SCRIPTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Structural and electronic properties of two-dimensional titanium carbo-oxides

Yong-Jie Hu, Christopher Tandoc, Michel W. Barsoum, Johanna Rosen, Jonas Bjork

Summary: This study investigates the low-energy, stable atomic forms of 2D titanium carbo-oxides as a function of carbon content. The stable configurations of carbon substitutions are comprehensively searched using first-principles calculations and a structure sampling scheme. A particularly low energy configuration is found, with the (101) planes of anatase bounding the top and bottom surfaces with a chemical formula of TiC1/4O3/2.

2D MATERIALS (2023)

Article Nanoscience & Nanotechnology

Quantifying the degree of disorder and associated phenomena in materials through zentropy: Illustrated with Invar Fe3Pt

Shun -Li Shang, Yi Wang, Zi-Kui Liu

Summary: In this study, a method to quantify the degree of disorder using configurational entropy is proposed, which can be used to predict the macroscopic functionalities of materials. The capability of this approach is demonstrated by calculating Invar Fe3Pt and comparing the results with experimental data.

SCRIPTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Ab Initio Modeling on The Thermodynamic and Temperature-Dependent Elastic Properties of Subsystems of The FCC FeNiCoCr Medium Entropy Alloys (MEAs)

Songge Yang, Yi Wang, Zi-kui Liu, Brajendra Mishra, Yu Zhong

Summary: This study systematically investigates the stability, phonon spectra, thermodynamics, and temperature-dependent elasticity of subsystems of FCC FeNiCoCr MEAs using the ab initio approach. By utilizing the quasi-harmonic approximation and the innovative Zentropy theory, the thermodynamic and elastic properties of FeNi, NiCo, FeNiCo, and FeNiCoCr MEAs considering magnetic transition were successfully predicted. The predicted results are in good agreement with available experimental data and CALPHAD prediction.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Ab initio studies on structural and thermodynamic properties of magnetic Fe

Songge Yang, Yi Wang, Zi-Kui Liu, Yu Zhong

Summary: This study investigates the total energy, phonon spectra, and thermodynamic properties of different polymorphs of pure Fe using the ab initio approach. The energy vs. volume curves and phonon spectra obtained show good agreement with previous calculations and experimental data. The thermodynamic properties are estimated using the quasiharmonic approximation, and a superposition approach based on Zentropy theory is used to predict magnetic transition temperatures and thermodynamic properties of pure Fe. The results demonstrate good agreement with experimental data and CALPHAD modeling.

COMPUTATIONAL MATERIALS SCIENCE (2023)

Article Chemistry, Physical

Stacking-disordered CoSn3 and tetragonally stacked CoSn4 formed during solid-state interdiffusion of Co and Sn

A. Leineweber, M. Hoppe, S. Martin, C. Schimpf, S. L. Shang, Z. K. Liu

Summary: The reactive interaction between Sn-rich solders and transition metals at high temperatures leads to the formation of intermetallic phases. This study focuses on the formation of intermetallics between Co and Sn under solid-state conditions. The crystal structures and microstructures were characterized using X-ray diffraction and electron microscopy techniques. The results revealed different crystal structures for CoSn3 and CoSn4 compared to previous studies. The criteria for accurate phase identification using XRD and EBSD methods were elaborated, including distinguishing different polytypes of CoSn3 or CoSn4.

INTERMETALLICS (2023)

Article Nanoscience & Nanotechnology

Parameter-free prediction of phase transition in PbTiO3 through combination of quantum mechanics and statistical mechanics

Zi-Kui Liu, Shun-Li Shang, Jinglian Du, Yi Wang

Summary: The thermodynamics of ferroelectric materials and their ferroelectric to paraelectric (FE-PE) transitions are often described by phenomenological Landau theory and more recently by effective Hamiltonian and various potentials. In this study, the zentropy theory is proposed to predict the FE-PE transition without parameter fitting. By considering the total entropy of a system as a weighted sum of entropies of configurations and the statistical entropy among the configurations, the zentropy theory accurately predicts the FE-PE transition in PbTiO3 using first-principles domain wall energies as the only input parameter.

SCRIPTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Thermodynamic and electron transport properties of Ca3Ru2O7 from first-principles phonon calculations and Boltzmann transport theory

Yi Wang, Yihuang Xiong, Tiannan Yang, Yakun Yuan, Shun -Li Shang, Zi-Kui Liu, Venkatraman Gopalan, Ismaila Dabo, Long-Qing Chen

Summary: This study presents a first-principles-based approach to calculate finite temperature thermal and electronic transport properties. It can be used to model and understand structural evolution during electronic, magnetic, and structural phase transitions at the mesoscale. A computationally tractable model is introduced to estimate electron relaxation time and its temperature dependence. The model is applied to Ca3Ru2O7 to investigate the electrical resistivity across the electronic phase transition at 48 K. The quasiharmonic phonon approach and Boltzmann transport theory are employed to account for thermal expansion and calculate the temperature dependence of electrical conductivity.

PHYSICAL REVIEW B (2023)

Article Nanoscience & Nanotechnology

Influence of accelerated corrosion on Al/steel RSW joints by in situ compression tests

Bo Pan, Hui Sun, Dongyue Xie, Shun-Li Shang, Nan Li, Blair E. Carlson, Yumeng Li, Zi-Kui Liu, Jingjing Li

Summary: This study investigates the correlations between galvanic corrosion, intermetallic compound formation, and welding energy input with regards to the initiation and propagation of micro-cracks in micropillars of resistant spot welding joints between aluminum and steel. The results show that higher welding energy leads to more severe corrosion and easier cracks initiation and propagation. Micropillars from the high welding energy region have a higher average yielding stress due to the thicker intermetallic compound layer.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2024)

Article Chemistry, Physical

Synergetic influence of nitrogen-doped species and hollow microporous structure on surface active sites of carbonaceous catalysts for oxygen reduction reaction of Zn-air battery

Kaixin Liang, Hui Zhang, Yongfeng Liang, Shun-Li Shang, Zi-Kui Liu, Junpin Lin

Summary: By coordinating nitrogen doping and pore structure, N-doped porous carbon materials were fabricated with highly comparable properties to commercial Pt/C catalysts. These carbon catalysts exhibited high catalytic activity and peak power density, making them highly feasible for practical applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Chemistry, Physical

Magnetic/optical assessments of RFeO3 (R=La, Pr, Nd, and Sm) ceramics: An experimental and theoretical discernment

J. Zamora, T. Bautista, N. S. Portillo-Velez, A. Reyes-Montero, H. Pfeiffer, F. Sanchez-Ochoa, H. A. Lara-Garcia

Summary: Experimental and DFT studies were conducted on the structural, magnetic, and optical properties of RFeO3 perovskites. The perovskites exhibited an orthorhombic crystal structure and weak ferromagnetic behavior. They were confirmed to be semiconductors with a bandgap of approximately 2.1 eV.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

The effect of Ti-based surface layer on AlSi thin film as a high-performance anode for the lithium-ion battery

Xianxiang Lv, Jing Jin, Weiguang Yang

Summary: By depositing TiN and TiO2 surface layers on AlSi films, the electrochemical performance of silicon-based anodes can be significantly improved, suppressing volume expansion and promoting the formation of a stable SEI layer.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Bifunctional phosphate-modulated Cu2O/CeO2 redox heterojunction: A promising approach for proficient CO2 reduction

Sharafat Ali, Haider Ali, Syedul Hasnain Bakhtiar, Sajjad Ali, Muhammad Zahid, Ahmed Ismail, Pir Muhammad Ismail, Amir Zada, Imran Khan, Huahai Shen, Rizwan Ullah, Habib Khan, Mohamed Bououdina, Xiaoqiang Wu, Fazal Raziq, Liang Qiao

Summary: The construction and optimization of redox-heterojunctions using a bifunctional phosphate as an electron-bridge demonstrated significant improvements in photo catalytic activity, including enhanced dispersion, reduced interfacial migration resistance, and increased abundance of active-sites.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Engineering heterogeneous synergistic interface and multifunctional cobalt-iron site enabling high-performance oxygen evolution reaction

Ren-Ni Luan, Na Xu, Chao-Ran Li, Zhi-Jie Zhang, Yu-Sheng Zhang, Jun Nan, Shu-Tao Wang, Yong-Ming Chai, Bin Dong

Summary: Extensive research has revealed that oxygen evolution reaction (OER) in alkaline conditions involves dynamic surface restructuring. The development and design of sulfide/oxide pre-catalysts can reasonably adjust the composition and structure after surface reconstruction, which is crucial for OER. This study utilized a simple two-step hydrothermal method to achieve in situ S leaching and doping, inducing the composition change and structure reconstruction of CoFe oxides. The transformed FeOOH and CoOOH exhibited excellent OER activity and could be easily mass-produced using low-cost iron based materials and simple methods.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Highly efficiency blue emissive from Bi3+ions in zero-dimensional organic bismuth halide for white LED applications

Jun'an Lai, Daofu Wu, Peng He, Kang An, Yijia Wang, Peng Feng, WeiWei Chen, Zixian Wang, Linfeng Guo, Xiaosheng Tang

Summary: Zero-dimensional organic-inorganic metal halides (OMHs) are gaining attention in the fabrication of light-emitting diodes due to their broad emission band and high photoluminescence quantum yield. This work synthesized a zero-dimensional organic tetraphenylphosphonium bismuth chloride (TBC) that showed efficient blue light emission, with the emission mechanism attributed to the transition of Bi3+ ions. White light-emitting diodes (WLEDs) were fabricated using TBC, along with green-emitting and red-emitting single crystals, achieving single-component white emissions. These findings demonstrate the different emission mechanism of ns2 ions-based OMHs and highlight the potential of bismuth-based OMHs in WLEDs applications.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Study on the wear resistance and mechanism of AlCrCuFe2NiTix high-entropy surfacing alloys

Xuewei Liang, Yunhai Su, Taisen Yang, Zhiyong Dai, Yingdi Wang, Xingping Yong

Summary: The revolutionary design concept of high-entropy alloys has brought new opportunities and challenges to the development of advanced metal materials. In this work, AlCrCuFe2NiTix high-entropy flux cored wires were prepared by combining the design idea of a high-entropy alloy with the characteristics of flux cored wire. AlCr-CuFe2NiTix high-entropy surfacing alloys were prepared using gas metal arc welding technology. The wear properties of the alloys were analyzed, and the phase composition, microstructure, strengthening mechanism, and wear mechanism were discussed. The results show that the alloys exhibit a dendritic microstructure with BCC/B2 + FCC phases. Increasing Ti content leads to the precipitation of Laves phase. The alloys show improved microhardness and wear resistance due to the precipitation of coherent B2 and Laves phases. However, excessive Ti addition results in the increase of Laves phase and reduced wear resistance of the alloys.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Facile synthesis of ternary g-C3N4/polyacrylic acid/CoFe2O4 nanocomposites for solar light irradiated photocatalytic and supercapacitor applications

M. Vadivel, M. Senthil Pandian, P. Ramasamy, Qiang Jing, Bo Liu

Summary: This work presents the enhanced photocatalytic and electrochemical performance of g-C3N4 assisted PAA on CoFe2O4 ternary nanocomposites. The incorporation of PAA and g-C3N4 improves the separation efficiency of photogenerated charge carriers, resulting in superior photocatalytic degradation and high specific capacitance values.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Investigation on bio-synthesized Ni- and Al-doped cobalt ferrite using lemon juice as eco-fuel

Vibhu T. Sivanandan, Ramany Revathy, Arun S. Prasad

Summary: In this study, pure and doped cobalt ferrite nanoparticles were prepared using the sol-gel auto-combustion method with the aid of lemon juice as eco-fuel. The crystal structure, lattice parameter, crystallite size, microstrain, optical parameters, and room temperature magnetic properties of the samples were analyzed. The effect of doping on the magnetic properties was also investigated.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Cu, Ni and Ag ions assisted preparation of nonpolar preferential oriented ZnO films with controlled morphology and optical properties

Qing Guo, Bowen Zhang, Benzhe Sun, Yang Qi

Summary: This study prepared ZnO films with various nonpolar preferred orientations using conventional chemical bath deposition method and characterized their growth process and mechanism. It was found that the type and concentration of nitrate could control the preferred orientation and surface roughness of ZnO films. Additionally, ZnO films with different preferred orientations exhibited different optical properties.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Characterization of magnetic FeCo particles with controlled bimetallic composition

Chong Zhang, Yan Liu, Zhaoyan Wang, Hang Yang

Summary: In this study, six bimetallic FeCo particles were synthesized via the hydrothermal method at different Fe:Co ratios. The Fe:Co ratio not only modulates the composition of the particles but also influences their structure and magnetic properties. The FeCo alloys showed a transformation from an Fe-based structure to a Co-based structure with increasing Co content. The Fe:Co ratio of 1:1 and 3:1 resulted in particles with the highest and lowest saturation magnetization, respectively.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Micro-alloying effects of Ta and B on nano-oxides and grain boundaries in 13CrWTi-ODS ferritic alloys

Jianning Zhang, Jing Li, Yiren Wang, Xiaodong Mao, Yong Jiang

Summary: We conducted a study on the formation of ultra-fine Y-Ti-Ta-O nano-oxides in Ta+B micro-alloyed 13CrWTi-ODS alloys using electron microscopy and first-principles calculations. The Y-Ti-Ta-O nano-oxides were found to be mainly Y2(Ti,Ta)2O7, with an average size of 7 nm and a number density of 6.8 x 1023 m-3. Excess boron was found to enhance the adhesion of some low-sigma grain boundaries but weaken the Fe/Y2Ti2O7 interface, while excess tantalum enhanced the Fe/Y2Ti2O7 interface but caused serious degradation of grain boundaries.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Nitrogen-doped reduced graphene oxide/black phosphorus quantum dot composites for electrocatalytic treatment of choroidal melanoma

Yirong Fang, Pei Cheng, Hang Yuan, Hao Zhao, Lishu Zhang

Summary: A new composite system of nitrogen-doped reduced graphene oxide and black phosphorus quantum dots has been developed for tumor therapy, showing improved electrochemical properties and stability. The system generates hydrogen peroxide and hydroxyl radical to effectively kill tumor cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Significantly enhanced magnetism in cobalt ferrite by manganese and terbium co-doping

Xiufang Qin, Yuanli Ma, Hui Zhang, Ting Zhang, Fang Wang, Xiaohong Xu

Summary: The structure and magnetism of cobalt ferrites after Mn2+-Tb3+ co-doping were studied. Co-doped samples exhibited cubic spinel structure and spherical shape of ferrite nanoparticles. The redistribution of Co2+ and Fe3+ ions between octahedral and tetrahedral sites was observed due to Mn2+-Tb3+ co-doping. The coercivity and magnetization saturation of co-doped samples were significantly improved, leading to a maximum energy product that is 190% higher than that of the un-doped sample.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

High-performance low-temperature solid oxide fuel cell with nanostructured lanthanum strontium cobaltite/yttria-stabilized zirconia cathode via advanced co-sputtering

Ho Yeon Lee, Wonjong Yu, Yoon Ho Lee

Summary: Recently, there has been an increasing interest in developing ultra-fine nanostructured electrodes with extensive reaction areas to enhance the performance and low-temperature operation of solid oxide fuel cells. The use of a refined approach involving co-sputtering metal alloys and oxide targets has demonstrated the feasibility of nano-columnar structures in perovskite-based electrodes, expanding the temperature range of thin film electrodes. This study systematically examines the effects of chamber pressure control in the co-sputtering process and identifies the intricate relationship between sputtering pressure and film structure. By fine-tuning the columnar growth in the electrode, significant improvements in performance and thermo-mechanical properties were achieved, resulting in high-performance all-sputtered solid oxide fuel cells.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)

Article Chemistry, Physical

Amorphous quaternary alloy nanoplates for efficient catalysis of hydrogen evolution reaction

Qianyun Bai, Xiaoxiao Yan, Da Liu, Kang Xiang, Xin Tu, Yanhui Guo, Renbing Wu

Summary: This study proposes a simple method to develop a non-precious transition metal-based electrocatalyst with high catalytic activity and robustness for the hydrogen evolution reaction. The as-synthesized electrode exhibits a low overpotential and high current density, indicating its potential in energy conversion.

JOURNAL OF ALLOYS AND COMPOUNDS (2024)