4.5 Article

Surface tension of binary mixtures of benzene plus propionic acid and butanoic acid between 298.15 K and 318.15 K: Measurement and modeling

Journal

JOURNAL OF CHEMICAL THERMODYNAMICS
Volume 168, Issue -, Pages -

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jct.2022.106723

Keywords

Benzene plus carboxylic acids mixtures; Vapor-liquid equilibria; Surface tension; Adsorption

Funding

  1. UCSC

Ask authors/readers for more resources

Experimental measurements of surface tension were conducted for benzene + propanoic acid and benzene + butanoic acid. Three theoretical models were used to model the surface tension and adsorption phenomenon of these binary mixtures. The results showed that all three models provided accurate descriptions of the surface tension and adsorption behavior of the mixtures.
Experimental measurement of the surface tension of benzene + propanoic acid and benzene + butanoic acid has been carried out in the temperature range of 298.15 K to 318.15 K and atmospheric pressure. 170 new experimental points of surface tension have been obtained. Three theoretical models, i.e., Linear gradient theory (LGT), Shereshefsky model (SM), and the extended Langmuir model (LM), were used to modeling the surface tension and adsorption phenomenon of these binary mixtures. The three models correlated the surface tension of the benzene + carboxylic acid mixtures, and the average percent deviation was, 0.04% for LGT, 0.08% for SM, and 0.05% for LM. The Helmholtz density term and the liquid and vapor densities required in computing density with LGT were obtained with perturbed chain-statistical associating fluid theory equation of state (PC-SAFT EOS). Based on SM, the standard Gibbs energy of adsorption and the free energy change in the surface region were calculated. The free energy change was used to obtain the excess number of molecular layers in the surface region. The required parameters of the LM were adjusted, the standard Gibbs energy of adsorption was calculated, and negative deviations from ideality were determined. Also mole fractions of solute Oat surface were calculated by using LM. Additionally, by using surface tensions at different temperatures, specific surface enthalpy and specific surface entropy were calculated for (benzene + carboxylic acid) mixtures. (C) 2022 Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available