4.7 Article

Novel Hybrid 1,2,4-and 1,2,3-Triazoles Targeting Mycobacterium Tuberculosis Enoyl Acyl Carrier Protein Reductase (InhA): Design, Synthesis, and Molecular Docking

Journal

Publisher

MDPI
DOI: 10.3390/ijms23094706

Keywords

tuberculosis; InhA enzyme; 1; 2; 3-and 1; 2; 4-Triazoles; in vitro; molecular docking

Funding

  1. KAUST

Ask authors/readers for more resources

This study focuses on the synthesis and characterization of a new class of 1,2,3- and 1,2,4-triazole hybrid compounds. The compounds are tested in vitro against the InhA enzyme and the inhibitors 7c and 7e show the most promising activity. Molecular docking is also conducted to analyze the binding of the compounds with the target InhA enzyme.
Tuberculosis (TB) caused by Mycobacterium tuberculosis is still a serious public health concern around the world. More treatment strategies or more specific molecular targets have been sought by researchers. One of the most important targets is M. tuberculosis' enoyl-acyl carrier protein reductase InhA which is considered a promising, well-studied target for anti-tuberculosis medication development. Our team has made it a goal to find new lead structures that could be useful in the creation of new antitubercular drugs. In this study, a new class of 1,2,3- and 1,2,4-triazole hybrid compounds was prepared. Click synthesis was used to afford 1,2,3-triazoles scaffold linked to 1,2,4-triazole by fixable mercaptomethylene linker. The new prepared compounds have been characterized by different spectroscopic tools. The designed compounds were tested in vitro against the InhA enzyme. At 10 nM, the inhibitors 5b, 5c, 7c, 7d, 7e, and 7f successfully and totally (100%) inhibited the InhA enzyme. The IC50 values were calculated using different concentrations. With IC50 values of 0.074 and 0.13 nM, 7c and 7e were the most promising InhA inhibitors. Furthermore, a molecular docking investigation was carried out to support antitubercular activity as well as to analyze the binding manner of the screened compounds with the target InhA enzyme's binding site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available