4.5 Article

Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain

Journal

EUROPEAN SPINE JOURNAL
Volume 31, Issue 8, Pages 2082-2091

Publisher

SPRINGER
DOI: 10.1007/s00586-022-07188-w

Keywords

Neck pain; Statistics; Prognosis; Machine learning

Ask authors/readers for more resources

This study compared the performance of machine learning techniques and traditional regression techniques in developing prognostic models for individuals with neck pain. Through analyzing data from 3001 participants, the study found that the machine learning algorithm Xgboost had the best performance in predicting arm pain, neck pain, and disability.
Purpose Prognostic models play an important clinical role in the clinical management of neck pain disorders. No study has compared the performance of modern machine learning (ML) techniques, against more traditional regression techniques, when developing prognostic models in individuals with neck pain. Methods A total of 3001 participants suffering from neck pain were included into a clinical registry database. Three dichotomous outcomes of a clinically meaningful improvement in neck pain, arm pain, and disability at 3 months follow-up were used. There were 26 predictors included, five numeric and 21 categorical. Seven modelling techniques were used (logistic regression, least absolute shrinkage and selection operator [LASSO], gradient boosting [Xgboost], K nearest neighbours [KNN], support vector machine [SVM], random forest [RF], and artificial neural networks [ANN]). The primary measure of model performance was the area under the receiver operator curve (AUC) of the validation set. Results The ML algorithm with the greatest AUC for predicting arm pain (AUC = 0.765), neck pain (AUC = 0.726), and disability (AUC = 0.703) was Xgboost. The improvement in classification AUC from stepwise logistic regression to the best performing machine learning algorithms was 0.081, 0.103, and 0.077 for predicting arm pain, neck pain, and disability, respectively. Conclusion The improvement in prediction performance between ML and logistic regression methods in the present study, could be due to the potential greater nonlinearity between baseline predictors and clinical outcome. The benefit of machine learning in prognostic modelling may be dependent on factors like sample size, variable type, and disease investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available