4.7 Article

Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment

Journal

CHEMOSPHERE
Volume 291, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132735

Keywords

Graphitic carbon nitride; Morphology; Photodegradation; Organic pollutants

Ask authors/readers for more resources

This review focuses on the application of graphitic carbon nitride (g-C3N4) as a photocatalyst. Pristine gC3N4 has certain drawbacks, but by modifying the catalyst's morphology and mixing it with other compounds, the photocatalytic performance can be enhanced. The modified catalysts show promising results in the degradation of pollutants and removal of heavy metals.
Water pollution is becoming an inevitable problem in today's world. Tons and tons of wastewater with hazardous pollutants are getting discharged into the clean water bodies every day. In this regard, photocatalytic environmental remediation using nanotechnology such as the use of organic, metal and non-metal based semiconductor photocatalysts for photodegradation of pollutants has gained enormous attention in the past few decades. This review is focused particularly on graphitic carbon nitride (g-C3N4) which is a cheap, metal-free, polymeric photoactive compound and it is used as a potential photocatalyst in wastewater treatment. Though, pristine gC3N4 is a good photocatalyst, it has certain drawbacks such as poor visible light absorption capacity, quicker recombination of photoelectrons and holes, delayed mass and charge transfer, etc. As a result, the pristine g-C3N4 catalyst is modified into novel 0D, 1D, 2D and 3D morphologies such as nano-quantum dots, nanorods, nanotubes, nanowires, nanosheets, nanoflakes, nanospheres, nanoshells, etc. It was also tailored into novel composites along with various compounds through doping, metal deposition, heterojunction formation, etc., to enhance the photocatalytic property of pure g-C3N4. The modified catalysts showed promising photocatalytic performance such as degradation of majority of pollutants in the environment. It also showed excellent results in the removal or reduction of heavy metals. This review provides a detailed record of g-C3N4 and its diverse photocatalytic applications in the past years and it provides knowledge for the development of such similar novel compounds in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available