4.7 Article

Co-firing of coal and biomass under pressurized oxy-fuel combustion mode: Experimental test in a 10 kWth fluidized bed

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 431, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.133457

Keywords

Oxy-fuel combustion; Pressurized combustion; Co-firing of coal and biomass; Pressurized oxy-fuel fluidized bed; CO2 capture

Funding

  1. Key Program of the National Natural Science Foundation of China [51736002]
  2. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX20_0098]
  3. Fundamental Research Funds for the Central Universities [3203002108D]
  4. China Scholarship Council (CSC)
  5. Australian Research Council

Ask authors/readers for more resources

Successful realization of stable, pressurized, and oxy-fuel combustion mode with coal and biomass mixtures as fuels in fluidized bed. Increasing combustion pressure and biomass blending ratio not only benefits better temperature distribution, more CO2 enrichment in flue gas, and higher combustion efficiency, but also reduces NOx and SO2 emissions.
Pressurized oxy-fuel combustion (POFC) of solid fuels in fluidized beds possess the potential for CO2 capture at low cost. However, the practical experience of oxy-coal combustion in pressurized fluidized beds (PFB) is still very limited, and there is a lack of attempts on the co-firing of coal and other fuels. In this study, the co-firing of coal and biomass in a POFC mode at a 10 kWth PFB was tested. The dynamic behaviors of the start-up process and combustion mode switching were investigated. The effects of key operating parameters, including combustion pressure (P), biomass blending ratio (M-b), and excess oxygen coefficient (alpha), on the temperature distributions, CO2 enrichment and conversion, pollutant emissions (CO, NOX, SO2), and solid residues were methodically studied. The results show that the stable, pressurized, and oxy-fuel combustion mode with coal and biomass mixtures as fuels can be successfully realized in a fluidized bed. Increasing P and M-b not only conduces to better temperature distribution, more CO2 enrichment in flue gas, and higher combustion efficiency but also has the advantage of reducing NOx and SO2 emissions by over 30%. In the oxy-fuel PFB, the positive effect of alpha on the combustion performance is more significant than that under atmospheric conditions. As P increases, the fly ash surface is more cracked, and the particle size distribution of fly ash decreases, while the bottom slag surface is smoother. Besides, the increase in P results in a decreased specific surface area and cumulative pore volume but an increased average pore diameter in fly ash.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Chemical

Modelling the co-firing of coal and biomass in a 10 kWth oxy-fuel fluidized bed

Qinwen Liu, Wenqi Zhong, Aibing Yu, Chi-Hwa Wang

Summary: With the improvement of the models for oxy-fuel co-firing, the adaptability of the models to the oxy-fuel atmosphere can be enhanced, and the accurate prediction of NO, N2O, SO2 emissions can be achieved. This study also provided valuable information for the design and operation control of oxy-fuel co-firing of coal and biomass in a fluidized bed.

POWDER TECHNOLOGY (2022)

Article Engineering, Chemical

Numerical study on the momentum and heat transfer of porous spheroids under laminar flow

Haishan Miao, Hao Zhang, Xizhong An, Chunhai Ke, Aibing Yu

Summary: This study investigates the combined effect of particle shape and porosity on the momentum and heat transfer of granular matter under laminar flow. It is found that particle shape, characterized by aspect ratio, plays a dominant role in affecting the drag coefficient and Nusselt number, while the influence of porosity becomes significant under high Reynolds number conditions.

POWDER TECHNOLOGY (2022)

Article Engineering, Chemical

Coupled simulation and deep-learning prediction of combustion and heat transfer processes in supercritical CO2 CFB boiler

Ying Cui, Wenqi Zhong, Zongyan Zhou, Aibing Yu, Xuejiao Liu, Jun Xiang

Summary: This study investigates the combustion process and heat transfer characteristics of the supercritical CO2 (S-CO2) power cycle in a circulating fluidized bed (CFB) using computational fluid dynamics (CFD) simulation and multiphase particle-in-cell (MP-PIC) method. A novel method using Radial Base Function (RBF) neural network for predicting simulation results is proposed to improve the prediction accuracy. The findings are significant for the design and optimization of S-CO2 CFB boilers.

ADVANCED POWDER TECHNOLOGY (2022)

Article Materials Science, Multidisciplinary

Numerical Investigation of Shaft Gas Injection Operation in Oxygen-Enriched Ironmaking Blast Furnace

Haiqi Nie, Aibing Yu, Lulu Jiao, Xiaoming Mao, Haifa Xu, Shibo Kuang

Summary: This study systematically investigates the effects of shaft gas injection on an oxygen blast furnace and finds that the fuel consumption decreases with increasing oxygen enrichment and shaft gas injection rate/temperature, while it increases less significantly at a higher injection position. When the oxygen enrichment is high or the shaft gas injection position/rate is low, the shaft injected gas can better replace coke, leading to improved utilization.

METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE (2022)

Article Engineering, Chemical

Numerical investigation of separation efficiency of the cyclone with supercritical fluid-solid flow

Zeyu Li, Zhenbo Tong, Aibing Yu, Hao Miao, Kaiwei Chu, Hao Zhang, Gang Guo, Jiang Chen

Summary: Hydrogen utilization is gaining attention and the supercritical water circulating fluidized bed reactor can generate hydrogen. This study uses CFD to analyze cyclone separation mechanisms under supercritical fluid, finding that changing the content of carbon dioxide and adding extra dipleg can improve cyclone performance.

PARTICUOLOGY (2022)

Article Thermodynamics

Combined effects of particle shape, incident angle and porosity on momentum and heat transfer between spheroids and fluids

Haishan Miao, Hao Zhang, Xizhong An, Jiang Chen, Aibing Yu

Summary: This study investigates the distribution of drag coefficient (Cd) and average Nusselt number (Nu) of a porous spheroid in a fluid under different conditions using particle-resolved direct numerical simulations. The results show that the shape, Reynolds number, and porosity have noticeable effects on Cd and Nu, and there are certain trends in their variations within certain ranges. Predictive correlations are established based on the numerical data, which can be used to improve multiphase models and computational fluid dynamics methods.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2022)

Article Materials Science, Multidisciplinary

Numerical Investigation of Burden Distribution in Hydrogen Blast Furnace

Jing Li, Shibo Kuang, Ruiping Zou, Aibing Yu

Summary: The study examines the effects of peripheral opening extent and shaft-injected hydrogen flow rate on the performance of a hydrogen blast furnace using computational fluid dynamics. Increasing the peripheral opening extent hinders the pre-reduction and pre-heating roles of shaft-injected hydrogen, but improves the CO indirect reduction rate. Increasing the shaft-injected hydrogen flow rate slows down the CO indirect reduction rate but enhances the H-2 indirect reduction rate.

METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE (2022)

Article Engineering, Chemical

Co-simulation of multibody dynamics and discrete element method for hydraulic excavators

Jieqing Gan, Zongyan Zhou, Aibing Yu, Dean Ellis, Reece Attwood, Wei Chen

Summary: Multibody dynamics (MBD) simulation is a useful tool for analyzing the kinematic function of multibody systems, while discrete element method (DEM) is commonly used for simulating particle flows and overall processes. Combining MBD and DEM methods through functional mock-up interface (FMI) co-simulation can predict equipment performance by considering both material and equipment behavior. This study utilized Dymola software to perform MBD and FMI co-simulations, developing MBD models for a hydraulic excavator system and GPU-based DEM models for excavator digging cycles. The results demonstrated the significant impact of solid materials on excavator movement.

POWDER TECHNOLOGY (2023)

Article Engineering, Chemical

Optimization of Ironmaking Blast Furnace Operations Using an Integrated Mathematical Model

Lingling Liu, Shibo Kuang, Baoyu Guo, Aibing Yu

Summary: Optimization of ironmaking blast furnaces involves considering bottom and top operations. A recently developed integrated BF model and numerical orthogonal experiments are used to predict BF performance indicators and conduct multi-objective optimization and operatable zone identification.

CHEMIE INGENIEUR TECHNIK (2023)

Article Energy & Fuels

Injection of COREX off-gas into ironmaking blast furnace

Lingling Liu, Shibo Kuang, Baoyu Guo, Aibing Yu

Summary: Oxygen blast furnace (OBF) is a low carbon ironmaking technology that suffers from high gas flame temperature. Injecting COREX off-gas (CROG) into the industrial BF can improve coal combustion and overall performance. The optimum injection rate of CROG helps achieve better fuel economy by enhancing indirect reduction and coke combustion.
Article Engineering, Chemical

Numerical study of the multiphase flows and separation performance of hydrocyclone with tapered cross-section inlet

E. Dianyu, Haihan Fan, Zhongfang Su, Guangtai Xu, Ruiping Zou, Aibing Yu, Shibo Kuang

Summary: This paper proposes a hydrocyclone with a tapered inlet design to reduce the influence of particles misplacement. The new hydrocyclone integrates the advantages of both spiral inlet and tangential inlet. Through the analysis of separation performance, flow characteristics, and volume fraction distributions, an optimum design is identified. Compared to a standard hydrocyclone, the new design significantly improves tangential velocities, expands the locus of zero vertical velocity, and achieves more stable air core, symmetric radial and axial velocity distributions, as well as reduced eddy flow and short-circuit flow. This study offers a new perspective for improving hydrocyclone flows and performance.

POWDER TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Droplets Patterning of Structurally Integrated 3D Conductive Networks-Based Flexible Strain Sensors for Healthcare Monitoring

Yang Zhang, Danjiao Zhao, Lei Cao, Lanlan Fan, Aiping Lin, Shufen Wang, Feng Gu, Aibing Yu

Summary: Flexible strain sensors are crucial for public healthcare as they can noninvasively monitor vital health signals. In this study, we developed structurally integrated 3D conductive networks-based flexible strain sensors using a droplet-based aerosol jet printing process and a transfer process. The sensors showed enhanced conduction and mechanical properties during stretching, and demonstrated effective responses to human movements such as finger bending and arm bending. Our findings highlight the potential of droplet-based aerosol jet printing for advanced flexible devices in optoelectronics and wearable electronics applications.

NANOMATERIALS (2023)

Article Engineering, Chemical

New understanding from intestinal absorption model: How physiological features influence mass transfer and absorption

Yifan Qin, Xiao Dong Chen, Aibing Yu, Jie Xiao

Summary: Mathematical modeling of mass transfer and absorption in the small intestine is challenging and requires a reliable and computationally efficient predictive model. This study derives an absorption model that considers the 3D intestinal inner wall structure and can be used in a 1D distributed model. Computational fluid dynamics simulations are used to quantify the mass-transfer coefficient. The model provides insights into the influence of intestinal morphology and motility on mass transfer and absorption.

AICHE JOURNAL (2023)

Article Energy & Fuels

Particle-scale modelling of injected hydrogen and coke co-combustion in the raceway of an ironmaking blast furnace

E. Dianyu, Peng Zhou, Langyong Ji, Jiaxin Cui, Qiang Xu, Liejin Guo, Aibing Yu

Summary: In this study, a validated CFD-DEM model is used to investigate the dynamics, microstructure, and thermochemical behaviors in the raceway of a blast furnace with hydrogen injection operations. The effects of hydrogen injection concentration on raceway size, gas temperature, and components are studied.
Article Pharmacology & Pharmacy

Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA

Hao Miao, Ke Huang, Yingwen Li, Renjie Li, Xudong Zhou, Jingyu Shi, Zhenbo Tong, Zhenhua Sun, Aibing Yu

Summary: In this study, the LNP formulation, atomization methods, and buffer system were optimized to maintain stability and efficiency of mRNA encapsulated LNPs during the atomization process. A suitable LNP formulation for atomization, AX4, DSPC, cholesterol, and DMG-PEG2K at a 35/16/46.5/2.5 (%) molar ratio, was identified based on in vitro experiments. Soft mist inhaler (SMI) was found to be the most suitable method for pulmonary delivery of mRNA encapsulated LNPs. The physico-chemical properties of the LNPs, such as size and entrapment efficiency, were further improved by adjusting the buffer system with trehalose. In vivo fluorescence imaging of mice demonstrated the potential of SMI with proper LNPs design and buffer system for inhaled mRNA-LNP therapies.

INTERNATIONAL JOURNAL OF PHARMACEUTICS (2023)

Article Engineering, Environmental

A metal-phenolic network-assembled nanotrigger evokes lethal ferroptosis via self-supply loop-based cytotoxic reactions

Xinping Zhang, Yuxin Guo, Xiaoyang Liu, Shun-Yu Wu, Ya-Xuan Zhu, Shao-Zhe Wang, Qiu-Yi Duan, Ke-Fei Xu, Zi-Heng Li, Xiao-Yu Zhu, Guang-Yu Pan, Fu-Gen Wu

Summary: This study develops a nanotrigger HCFT for simultaneous photodynamic therapy and light-triggered ferroptosis therapy. The nanotrigger can relieve tumor hypoxia, induce enhanced photodynamic reaction, and facilitate the continuation of Fenton reaction, ultimately leading to lethal ferroptosis in tumor cells.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

XAS and DFT investigation of atomically dispersed Cu/Co alloyed Pt local structures under selective hydrogenation of acetylene to ethylene

Olumide Bolarinwa Ayodele, Toyin Daniel Shittu, Olayinka S. Togunwa, Dan Yu, Zhen-Yu Tian

Summary: This study focused on the semihydrogenation of acetylene in an ethylene-rich stream using two alloyed Pt catalysts PtCu and PtCo. The PtCu catalyst showed higher activity and ethylene yield compared to PtCo due to its higher unoccupied Pt d-orbital density. This indicates that alloying Pt with Cu is more promising for industrial relevant SHA catalyst.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A multifunctional emitter with synergistical adjustment of rigidity and flexibility for high-performance data-recording and organic light-emitting devices with hot exciton channel

Guowei Chen, Wen-Cheng Chen, Yaozu Su, Ruicheng Wang, Jia-Ming Jin, Hui Liang, Bingxue Tan, Dehua Hu, Shaomin Ji, Hao-Li Zhang, Yanping Huo, Yuguang Ma

Summary: This study proposes an intramolecular dual-locking design for organic luminescent materials, achieving high luminescence efficiency and performance for deep-blue organic light-emitting diodes. The material also exhibits unique mechanochromic luminescence behavior and strong fatigue resistance.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Cobalt/nickel purification by solvent extraction with ionic liquids in millifluidic reactors: From single-channel to numbered-up configuration with solvent recycle

Joren van Stee, Gregory Hermans, Jinu Joseph John, Koen Binnemans, Tom Van Gerven

Summary: This work presents a continuous solvent extraction method for the separation of cobalt and nickel in a millifluidic system using Cyphos IL 101 (C101) as the extractant. The optimal conditions for extraction performance and solvent properties were determined by investigating the effects of channel length, flow rate, and temperature. The performance of a developed manifold structure was compared to a single-channel system, and excellent separation results were achieved. The continuous separation process using the manifold structure resulted in high purity cobalt and nickel products.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Environment-triggered nanoagent with programmed gas release performance for accelerating diabetic infected wound healing

Yan Xu, Jingai Jiang, Xinyi Lv, Hui Li, Dongliang Yang, Wenjun Wang, Yanling Hu, Longcai Liu, Xiaochen Dong, Yu Cai

Summary: A programmed gas release nanoparticle was developed to address the challenges in treating diabetic infected wounds. It effectively removes drug-resistant pathogens and remodels the wound microenvironment using NO and H2S. The nanoparticle can eliminate bacteria and promote wound healing through antibacterial and anti-inflammatory effects.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Synergistic dopa-reinforced fluid hydrosol as highly efficient coal dust suppressant

Tong Xia, Zhilin Xi, Lianquan Suo, Chen Wang

Summary: This study investigated a highly efficient coal dust suppressant with low initial viscosity and high adhesion-solidification properties. The results demonstrated that the dust suppressant formed a network of multiple hydrogen bonding cross-linking and achieved effective adhesion and solidification of coal dust through various chemical reactions.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping

Jinzhi Cai, Zhenshan Li

Summary: A density functional theory-based rate equation was developed to predict the gas-solid reaction kinetics of CaO carbonation with CO2 in calcium looping. The negative activation energy of CaO carbonation close to equilibrium was accurately predicted through experimental validation.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

Jianxiong Chen, Fuhao Ren, Ningning Yin, Jie Mao

Summary: This study presents an economically efficient and easily implementable surface modification approach to enhance the high-temperature electrical insulation and energy storage performance of polymer dielectrics. The self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Medium entropy metal oxide induced *OH species targeted transfer strategy for efficient polyethylene terephthalate plastic recycling

Zijian Li, Zhaohui Yang, Shao Wang, Hongxia Luo, Zhimin Xue, Zhenghui Liu, Tiancheng Mu

Summary: This study reports a strategy for upgrading polyester plastics into value-added chemicals using electrocatalytic methods. By inducing the targeted transfer of *OH species, polyethylene terephthalate was successfully upgraded into potassium diformate with high purity. This work not only develops an excellent electrocatalyst, but also provides guidance for the design of medium entropy metal oxides.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

A novel environmental friendly and sustainable process for textile dyeing with sulphur dyes for cleaner production

Navneet Singh Shekhawat, Surendra Kumar Patra, Ashok Kumar Patra, Bamaprasad Bag

Summary: This study primarily focuses on developing a sulphur dyeing process at room temperature using bacterial Lysate, which is environmentally friendly, energy and cost effective, and sustainable. The process shows promising improvements in dye uptake and fastness properties.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Dengjia Shen, Hongyang Ma, Madani Khan, Benjamin S. Hsiao

Summary: This study developed cationic PVC nanofibrous membranes with high filtration and adsorption capability for the removal of bacteria and hexavalent chromium ions from wastewater. The membranes demonstrated remarkable performance in terms of filtration efficiency and maximum adsorption capacity. Additionally, modified nanofibrous membranes were produced using recycled materials and showed excellent retention rates in dynamic adsorption processes.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Concerted proton-coupled electron transfer promotes NiCoP nanowire arrays for efficient overall water splitting at industrial-level current density

Xiaoyan Wang, Zhikun Wang, Ben Jia, Chunling Li, Shuangqing Sun, Songqing Hu

Summary: Inspired by photosystem II, self-supported Fe-doped NiCoP nanowire arrays modified with carboxylate were constructed to boost industrial-level overall water splitting by employing the concerted proton-coupled electron transfer mechanism. The introduction of Fe and carboxyl ligand led to improved catalytic activity for HER and OER, and NCFCP@NF exhibited long-term durability for overall water splitting.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Self-limiting growth of thin dense LTA membranes boosts H2 gas separation performance

Pengyao Yu, Ge Yang, Yongming Chai, Lubomira Tosheva, Chunzheng Wang, Heqing Jiang, Chenguang Liu, Hailing Guo

Summary: Thin LTA zeolite membranes were prepared through secondary growth of nano LTA seeds in a highly reactive gel, resulting in membranes with superior permeability and selectivity in gas separation applications.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Prediction of phosphate adsorption amount, capacity and kinetics via machine learning: A generally physical-based process and proposed strategy of using descriptive text messages to enrich datasets

Baiqin Zhou, Huiping Li, Ziyu Wang, Hui Huang, Yujun Wang, Ruichun Yang, Ranran Huo, Xiaoyan Xu, Ting Zhou, Xiaochen Dong

Summary: The use of machine learning to predict the performance of specific adsorbents in phosphate adsorption shows great promise in saving time and revealing underlying mechanisms. However, the small size of the dataset and insufficient detailed information limits the model training process and the accuracy of results. To address this, the study employs a fuzzing strategy that replaces detailed numeric information with descriptive text messages on the physiochemical properties of adsorbents. This strategy allows the recovery of discarded samples with limited information, leading to accurate prediction of adsorption amount, capacity, and kinetics. The study also finds that phosphate uptake by adsorbents is generally through physisorption, with some involvement of chemisorption. The framework established in this study provides a practical approach for quickly predicting phosphate adsorption performance in urgent scenarios, using easily accessible information.

CHEMICAL ENGINEERING JOURNAL (2024)

Article Engineering, Environmental

Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature

Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve

Summary: This study evaluates the use of four esterified fatty acids and three vegetable oils as absorption liquids for hydrophobic VOCs. The experimental results show that isopropyl myristate is the most efficient liquid for absorbing the target VOCs.

CHEMICAL ENGINEERING JOURNAL (2024)