4.7 Article

Optimal seamline detection for multiple image mosaicking via graph cuts

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.isprsjprs.2015.12.007

Keywords

Multiple image mosaicking; Seamline detection; Graph cuts; Image parallax; Street-view panorama; Aerial images

Funding

  1. National Natural Science Foundation of China [41571436, 41271431]
  2. Hubei Province Science and Technology Support Program, China [2015BAA027]
  3. National Basic Research Program of China [2012CB719904]

Ask authors/readers for more resources

While mosaicking images, especially captured from the scenes of large depth differences with respective to cameras at varying locations, the detection of seamlines within overlap regions is a key issue for creating seamless and pleasant image mosaics. In this paper, we propose a novel algorithm to efficiently detect optimal seamlines for mosaicking aerial images captured from different viewpoints and for mosaicking street-view panoramic images without a precisely common center in a graph cuts energy minimization framework. To effectively ensure that the seamlines are optimally detected in the laterally continuous regions with high image similarity and low object dislocation to magnificently conceal the parallax between images, we fuse the information of image color, gradient magnitude, and texture complexity into the data and smooth energy terms in graph cuts. Different from the traditional frame-to frame optimization for sequentially detecting seamlines for mosaicking multiple images, our method applies a novel multi-frame joint optimization strategy to find seamlines within multi-overlapped images at one time. In addition, we propose simple but effective strategies to semi-automatically guide the seam lines by exploiting simple human-computer interaction strongly constraining the image regions that the seamlines will or won't pass through, which is often ignored by many existing seamline detection methods. Experimental results on a large set of aerial, oblique and street-view panoramic images show that the proposed method is capable of creating high-quality seamlines for multiple image mosaicking, while not crossing majority of visually obvious foreground objects and most of overlap regions with low image similarity to effectively conceal the image parallax at different extents. (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available