4.6 Article

Biological tissue mechanics with fibres modelled as one-dimensional Cosserat continua. Applications to cardiac tissue

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 81, Issue -, Pages 84-94

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2015.11.009

Keywords

Cardiac mechanics; Soft-tissue mechanics; Cosserat-fibre continuum; Generalised continua; Meshfree methods

Categories

Funding

  1. Centre for High Performance Computing
  2. National Research Foundation of South Africa [90528, 93111]

Ask authors/readers for more resources

Classically, the elastic behaviour of cardiac tissue mechanics is modelled using anisotropic strain energy functions capturing the averaged behaviour of its fibrous micro-structure. The strain energy function can be derived via representation theorems for anisotropic functions where a suitable non-linear strain tensor, e.g. the Green strain tensor, describes locally the current state of strain (Holzapfel and Ogden, 2009; Zheng, 1994). These approaches are usually of phenomenological nature and do not elucidate on the complex heterogeneous material composition of cardiac tissue (Rosenberg and Cimrman, 2003). In this research the fibrous characteristics of the myocardium are modelled by one-dimensional Cosserat continua. This additionally allows for the inclusion of non-local effects due to the heterogeneous material composition at smaller scales. Specifically, the non-local material response is linked to higher-order deformation modes associated with twisting and bending of an assembly of muscle fibres arising from hierarchical multi-scale features within a representative volume element (RVE). In this sense, a scaling parameter characteristic for the tissue's underlying micro-structure, becomes a material parameter of the formulation. As the anisotropic material composition of the myocardium throughout the heart is highly non-uniform, the ability to implicitly account for scale-dependent torsion and bending effects in the constitutive law gives this approach an advanced material description over classical formulations. The assumed hyperelastic material behaviour of myocardial tissue is represented by a non-linear strain energy function which includes contributions linked to the Cosserat-fibre continuum and complementary terms which refer to the extra-cellular matrix. Utilising the Element-free Galerkin method, simulations of specimen shear cubes and the left ventricle undergoing passive filling are introduced to investigate ventricular tissue mechanics. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available