4.6 Article

COVID-19 and Antimicrobial Resistance: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance-WHONET-Greece (January 2018-March 2021)

Journal

LIFE-BASEL
Volume 11, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/life11100996

Keywords

antimicrobial resistance; COVID-19; routine laboratory data; surveillance system

Ask authors/readers for more resources

Analyzing data from Greek hospitals, it was found that changes in hospital practices due to the COVID-19 pandemic may impact antimicrobial resistance trends. Differences in bacterial susceptibility to antibiotics were observed before and after the pandemic, suggesting the need for prompt action to control the development of resistance issues.
Changes in hospitals' daily practice due to COVID-19 pandemic may have an impact on antimicrobial resistance (AMR). We aimed to assess this possible impact as captured by the Greek Electronic System for the Surveillance of Antimicrobial Resistance (WHONET-Greece). Routine susceptibility data of 17,837 Gram-negative and Gram-positive bacterial isolates from blood and respiratory specimens of hospitalized patients in nine COVID-19 tertiary hospitals were used in order to identify potential differences in AMR trends in the last three years, divided into two periods, January 2018-March 2020 and April 2020-March 2021. Interrupted time-series analysis was used to evaluate differences in the trends of non-susceptibility before and after the changes due to COVID-19. We found significant differences in the slope of non-susceptibility trends of Acinetobacter baumannii blood and respiratory isolates to amikacin, tigecycline and colistin; of Klebsiella pneumoniae blood and respiratory isolates to meropenem and tigecycline; and of Pseudomonas aeruginosa respiratory isolates to imipenem, meropenem and levofloxacin. Additionally, we found significant differences in the slope of non-susceptibility trends of Staphylococcus aureus isolates to oxacillin and of Enterococcus faecium isolates to glycopeptides. Assessing in this early stage, through surveillance of routine laboratory data, the way a new global threat like COVID-19 could affect an already ongoing pandemic like AMR provides useful information for prompt action.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available