4.7 Article Proceedings Paper

Investigation of micro-tube solid oxide fuel cell fabrication using extrusion method

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 41, Issue 23, Pages 10037-10043

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2015.12.203

Keywords

Micro tubular solid oxide fuel cell; Extrusion method; Die design; Dip coating technique

Ask authors/readers for more resources

Extrusion is one of the most effective and inexpensive methods used in the production of ceramic tubes for tubular or micro-tubular solid oxide fuel cell (SOFC) applications. In this method, the parameters such as the viscosity of the ceramic slurry, the extrusion speed and the die temperature need to be optimized for a high performance. In this study, anode supported micro-tubular solid oxide fuel cells are successfully fabricated via a specially designed vertical-type piston extruder machine. The die design enables the production of micro-tubular SOFCs with outer diameters from 3 to 4.5 mm. The die temperature is determined to be the most important process parameter and the suitable die temperature is ranging 40-70 degrees C depending on the slurry content. The electrolyte layer is coated on the anode support tube by vacuum assist dip coating technique and co-sintering is applied with a home-made porous sintering apparatus to avoid dimensional anomalies. The effects of the parameters such as the composition of the electrolyte solution, the vacuum pressure and the immersion time on the electrolyte thickness are investigated. It is found that the electrolyte thickness decreases when the immersion time and vacuum pressure are reduced. Moreover, the thickness of the electrolyte is found to be depended on the content of the electrolyte solution. The effect of the pre-sintering temperature on the electrolyte quality is also investigated. The sintering temperatures of 1000 degrees C and 1100 degrees C provide a similar and desired electrolyte microstructure. A peak power density of 140 mW cm(-2) is obtained at 700 degrees C from the final cell. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available