4.6 Article

Genomic and Metabolomic Analyses of the Marine Fungus Emericellopsis cladophorae: Insights into Saltwater Adaptability Mechanisms and Its Biosynthetic Potential

Journal

JOURNAL OF FUNGI
Volume 8, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/jof8010031

Keywords

antimicrobial; anticancer; marine fungi; metabolites; whole genome sequencing

Funding

  1. Portuguese Foundation for Science and Technology (FCT) [UIDB/50017/2020+UIDP/50017/2020]
  2. M.F.M.G [SFRH/BD/129020/2017, SFRH/BD/137394/2018]

Ask authors/readers for more resources

This study investigated the genome and metabolome of E. cladophorae MUM 19.33, revealing a large number of genes involved in metabolite synthesis and genomic signatures suggestive of adaptability to the marine environment. The study also identified potential antifungal, antibacterial, anticancer, and anti-inflammatory metabolites in E. cladophorae MUM 19.33. These findings are important for future biotechnological exploitation of the species.
The genus Emericellopsis is found in terrestrial, but mainly in marine, environments with a worldwide distribution. Although Emericellopsis has been recognized as an important source of bioactive compounds, the range of metabolites expressed by the species of this genus, as well as the genes involved in their production are still poorly known. Untargeted metabolomics, using UPLC- QToF-MS/MS, and genome sequencing (Illumina HiSeq) was performed to unlock E. cladophorae MUM 19.33 chemical diversity. The genome of E. cladophorae is 26.9 Mb and encodes 8572 genes. A large set of genes encoding carbohydrate-active enzymes (CAZymes), secreted proteins, transporters, and secondary metabolite biosynthetic gene clusters were identified. Our analysis also revealed genomic signatures that may reflect a certain fungal adaptability to the marine environment, such as genes encoding for (1) the high-osmolarity glycerol pathway; (2) osmolytes' biosynthetic processes; (3) ion transport systems, and (4) CAZymes classes allowing the utilization of marine polysaccharides. The fungal crude extract library constructed revealed a promising source of antifungal (e.g., 9,12,13-Trihydroxyoctadec-10-enoic acid, hymeglusin), antibacterial (e.g., NovobiocinA), anticancer (e.g., daunomycinone, isoreserpin, flavopiridol), and anti-inflammatory (e.g., 2'-O-Galloylhyperin) metabolites. We also detected unknown compounds with no structural match in the databases used. The metabolites' profiles of E. cladophorae MUM 19.33 fermentations were salt dependent. The results of this study contribute to unravel aspects of the biology and ecology of this marine fungus. The genome and metabolome data are relevant for future biotechnological exploitation of the species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available