4.8 Article

Unraveling the Kinematics of Sperm Motion by Reconstructing the Flagellar Wave Motion in 3D

Journal

SMALL METHODS
Volume 6, Issue 3, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smtd.202101089

Keywords

3D reconstruction; flagellar waves; reproduction; sperm motility

Funding

  1. Australian Research Council (ARC) [DP190100343, DP210103361]
  2. Monash Interdisciplinary Research Grants

Ask authors/readers for more resources

This study introduces an automated platform that uses thin-lens approximation and high-speed dark field microscopy to reconstruct sperm flagellar waveform in 3D, enabling analysis of sperm swimming behavior. The study found that head-tethered mouse sperm exhibit a rolling beating behavior in 3D, and discovered the properties of their flagellar waveform.
Sperm swim through the female reproductive tract by propagating a 3D flagellar wave that is self-regulatory in nature and driven by dynein motors. Traditional microscopy methods fail to capture the full dynamics of sperm flagellar activity as they only image and analyze sperm motility in 2D. Here, an automated platform to analyze sperm swimming behavior in 3D by using thin-lens approximation and high-speed dark field microscopy to reconstruct the flagellar waveform in 3D is presented. It is found that head-tethered mouse sperm exhibit a rolling beating behavior in 3D with the beating frequency of 6.2 Hz using spectral analysis. The flagellar waveform bends in 3D, particularly in the distal regions, but is only weakly nonplanar and ambidextrous in nature, with the local helicity along the flagellum fluctuating between clockwise and counterclockwise handedness. These findings suggest a nonpersistent flagellar helicity. This method provides new opportunities for the accurate measurement of the full motion of eukaryotic flagella and cilia which is essential for a biophysical understanding of their activation by dynein motors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available