4.6 Article

Characterization of Ni-P based poly-alloy and composite coatings involving nanoindentation and nanoscratch tests

Journal

MATERIALS TODAY COMMUNICATIONS
Volume 29, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mtcomm.2021.102991

Keywords

Nanoindentation; Nanoscratch; Poly-alloy; Composite; Coating; Heat treatment

Funding

  1. Council of Scientific & Industrial Research, New Delhi [22 (0804) /19/EMR-II]

Ask authors/readers for more resources

Copper-based alloy coatings are suitable for corrosion protection, while poly-alloy and composite coatings are preferred for tribological applications. Results show that annealing at specific temperatures can enhance the hardness and elastic modulus of the coatings, reducing wear rate and coefficient of friction.
Tungsten and titanium dioxide-based alloy and composite coatings are customarily used in tribological applications. On the contrary, copper-based alloy coatings are preferable for anti-corrosion applications. Thus with an aim to develop poly-alloy and composite coating for tribological applications, two different quaternary coatings viz., Ni-P-Cu-W (poly-alloy) and Ni-P-Cu-TiO2 (composite) were synthesized and studied. Hardness and elastic modulus of the coatings were studied by nanoindentation tests. These properties are the primary indicators of the quality of the coatings and are also useful in the modelling of micro or nano-scale friction and wear. Nanotribological properties of these coatings were investigated by nano-scratch tests. The impact of annealing temperature on the nano-mechanical, and nano-tribological properties of these coatings was investigated. The results revealed that the hardness and elastic modulus of Ni-P-Cu-W coating reached a maximum value of similar to 10.48 GPa and similar to 249.07 GPa respectively after annealing at 500 degrees C due to grain enlargement and Ni3P phase formation. Consequently, the lowest wear rate (similar to 5.00 x 10(-14) m(2)N(-1)) and coefficient of friction (similar to 0.29) were obtained after annealing at 500 degrees C. Regarding Ni-P-nealeCu-TiO2 coating, maximum hardness (similar to 0.79 GPa) and elastic modulus (similar to 98.05 GPa) were obtained at 400 degrees C and condition. As expected the lowest wear rate (similar to 2.16 x 10(-11) m(2)N(-1)) and coefficient of friction (similar to 0.08) were observed after annealing at this temperature. In composite coating heating at 400 degrees C caused grain growth and formation of stable Ni3P phase, but at the further higher temperature it transformed into metastable phase and those properties deteriorated. Pile-up formation also decreased due to the increase of strain hardening exponent with annealing temperature. Heat treatment improved the properties more significantly in alloy coatings compared to composite coatings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Metallurgy & Metallurgical Engineering

A FEM-Supported Hybrid Approach for Determination of Stress-Strain Relation of Poly-alloy Coating by Inverse Analysis

Bal Mukund Mishra, Supriyo Roy

Summary: In recent years, researchers have been using nanoindentation and finite element simulation to estimate the stress-strain behavior of thin-film coatings. Advances in machine learning algorithms and artificial intelligence have made it possible to extract the properties of a material in a more systematic way. The aim of this study is to find the optimum values of the constants of power-law plastic behavior for thin-film alloy coatings.

TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS (2022)

Review Chemistry, Multidisciplinary

Functionally graded coatings on biomaterials: a critical review

S. Roy

MATERIALS TODAY CHEMISTRY (2020)

Proceedings Paper Automation & Control Systems

Optimization of wear of electroless Ni-P-Cu coating using artificial bee colony algorithm

Supriyo Roy, Prasanta Sahoo

2ND INTERNATIONAL CONFERENCE ON INNOVATIONS IN AUTOMATION AND MECHATRONICS ENGINEERING, ICIAME 2014 (2014)

Article Materials Science, Multidisciplinary

Parametric optimization of corrosion and wear of electroless Ni-P-Cu coating using grey relational coefficient coupled with weighted principal component analysis

Supriyo Roy, Prasanta Sahoo

INTERNATIONAL JOURNAL OF MECHANICAL AND MATERIALS ENGINEERING (2014)

Article Electrochemistry

Corrosion Study of Electroless Ni-P-W Coatings Using Electrochemical Impedance Spectroscopy

Supriyo Roy, Prasanta Sahoo

PORTUGALIAE ELECTROCHIMICA ACTA (2012)

Article Materials Science, Multidisciplinary

Experimental and numerical assessment of thermomechanical and morphological characteristics of pin and pinless micro friction stir welds

Ananta Dutta, Surjya K. Pal, Sushanta K. Panda

Summary: In the realm of micro-Friction Stir Welding (FSW), this study investigates the influence of pinless and pin tool on hook formation, temperature evolution, and bonding mechanisms. The study reveals that pin tool improves joint strength and reduces axial force during traversing. Pin tool also exhibits a higher proportion of recrystallized grains compared to pinless tool, resulting in better weld quality.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Effective attenuation of electromagnetic waves via silane surface modified zinc oxide/polybenzoxazine nanocomposites for EMI shielding application

Abdelmalek Habes, Mehdi Derradji, Oussama Mehelli, Fouad Benaliouche, Slimane Abdous, Youcef Medjaouri, Nour Chirine Abderrahim, Hakima Fodil, Mohamed El Amine Kadi

Summary: In recent years, there has been significant progress in advancing nanomaterials with exceptional properties for electromagnetic (EM) wave absorption. This study investigates the application of a novel thermosetting phenolic resin as a polymeric matrix for EM shielding, highlighting the enhancement of stability with the incorporation of zinc oxide nanoparticles.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Adsorption performance of Cu-MoTe2 on SF6 decomposition products: A first-principles study

Xiaoxing Zhang, Yongchao Luo, Kai Xu, Weihao Liu, Shuangshuang Tian, Benli Liu, Jiahao Wang, Feng Hu

Summary: This study calculates and analyzes the adsorption performance and sensing characteristics of Cu-MoTe2 for SF6 decomposition components. The results show that Cu-MoTe2 chemisorbs SO2 and H2S, while physisorbs SOF2. Cu-MoTe2 has the potential to be used as a chemical sensor material.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

PLLA-COI multilayer nanofiber membrane for anti-adhesion of the Achilles tendon

Xin Qu, Xinyu Sang, Yarong Lv, Ce Wang, Ping Hu, Quanyi Guo, Yong Liu

Summary: In this study, a PLLA-COI multilayer nanofiber membrane was prepared to prevent peritendinous adhesion, and it was found to have good cell compatibility and anti-adhesion effect, effectively promoting the recovery of Achilles tendon injury.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Exploring the energy harvest of droplet flow over inducted film for the rainy-shiny solar panel application

Ching-Yuan Ho, Chen-Yi Su, Wei-Zhe Hu

Summary: An equivalent electrical circuit (EEC) is established to understand the droplet-base electricity generation (DEG) mechanism, using voltage-time curve decomposition. The concept of Debye length is introduced to explain charge density at the interface between the ionic droplet and the PTFE surface. This study provides valuable insights into the exponential decay of output voltage and the improvement of solar panel performance in alternating rainy and dry weather through correct circuit design.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Effects of ethylammonium and rubidium addition to guanidinium-based CH3NH3PbI3 perovskite photovoltaic devices prepared at 190 °C in ambient air

Iori Ono, Takeo Oku, Atsushi Suzuki, Sakiko Fukunishi, Tomoharu Tachikawa, Tomoya Hasegawa

Summary: The effects of adding rubidium (Rb) and ethylammonium (CH3CH2NH3, EA) to guanidinium [C(NH2)3, GA] based CH3NH3PbI3 perovskite solar cells were investigated. The lattice constants and (100)-orientation of EA and Rb-modified perovskite crystals increased compared to the as-prepared perovskite. The addition of GA and EA effectively improved the photovoltaic properties of the device under indoor light conditions.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Effect of composite structure on titanium alloy for infrared antireflection performance

Xuewu Li, Hongxing Wang, Zhiguo Xing, Yanfei Huang, Weiling Guo, Haidou Wang, Yanfang Zhang, Longlong Zhou

Summary: This study prepared a novel composite antireflective structure with slotted holes using FDTD simulation combined with femtosecond laser design to further improve the infrared anti-reflective performance. The results show that the antireflection performance of the simulated groove-hole composite structure is better than that of the individual groove and hole structures, and the nanoparticle structures can further improve the antireflection performance in the infrared region.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

The effect of thermal shock-based heat-treatment on the cost-effective and low-temperature synthesis of needle-like r-BN

Sepideh Soltani, Hajar Ghanbari, S. Mohammad Mirkazemi

Summary: In this study, h-BN and r-BN structures were synthesized through controlled nitridation. The h-BN exhibited sheet-like morphology, while the r-BN formed needle-like hollow structures.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Selection of mechanical properties of uranium and uranium alloys after corrosion based on machine learning

Wanying Zhang, Xiaoyuan Wang, Yibo Ai, Weidong Zhang

Summary: This study investigates the impact of oxygen corrosion on the mechanical properties of uranium and uranium alloys and develops a feature-guided decision tree algorithm for prediction. The research highlights crucial correlations discovered through feature engineering, improving the performance of machine learning models. The mechanical properties of uranium and uranium alloys after oxygen corrosion are successfully predicted with a prediction error of less than 5%.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Characterizing the time-dependent external force on the cars' hood door in accident using deep neural networks

Qiong Cheng, Yao Zhao, Juntao Zhuang, Ahmad M. Alshamrani

Summary: This study presents a model to simulate the transient dynamics of a car's hood door during an accident, with reinforced structure in the axial direction using graphene nanoplatelets. The results are verified through comparison with open-source results and deep neural networks. The study highlights the importance of graphene nanoplatelets in the composite system's transient and forced vibrations, and provides valuable suggestions for future structural designs.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Investigation of the equilibrium morphology of fcc e - Cu in Fe-Cu alloys using a non-local Allen-Cahn model

Rostyslav Nizinkovskyi, Thorsten Halle, Manja Krueger

Summary: Cu-precipitation in reactor pressure vessel steels is a major concern for the degradation of mechanical properties. This study develops and implements a non-local phase-field model to investigate the equilibrium morphology of precipitates in the over-aged state. The model confirms that the precipitates should have an oblate lath-like shape, which is supported by experimental data. The orientation of the precipitates is consistent with literature. The mechanism of morphology accommodation is explained using the invariant-line method. However, the equilibrium values of elongation significantly deviate from experimental data, likely due to the metastable state of the precipitates during the coarsening process.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Investigation of deformation behavior of Mg-2Ho alloy based on hyperbolic sine constitutive equation and PSO-BP neural network

Xiaowei Li, Yafei Liu, Shiyu Luan, Deqing Ma, Xiaoyu Liu, Qiangbing Liu, Jinhui Wang

Summary: In this study, the hot deformation behavior of as-cast Mg-2Ho binary alloy under different strain rates and deformation temperatures was systematically studied. The microstructure and dynamic recrystallization mechanisms were analyzed using SEM and EBSD techniques. A strain-compensated Arrhenius constitutive equation and a PSO-BP ANN model based on machine learning were established to analyze the flow behavior. The experimental results showed that the flow stress decreased with increasing temperature and decreasing strain rate. The PSO-BP ANN model demonstrated good accuracy in predicting flow stress.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Investigation on the rheological behavior of PA6 film during biaxial stretching

Jiaxin Liu, Guangkai Liao, Zhenyan Xie, Bowen Li, Lingna Cui, Yuejun Liu

Summary: This study investigated the rheological behavior of polyamide 6 (PA6) film during biaxial stretching and found that the elastic-plastic deformation during stretching affected the stress rebound or relaxation during heat setting. The relaxation spectrum and activation energy spectrum were calculated, revealing the process of stress relaxation as energy release and stress rebound as energy absorption. The results provide theoretical guidance for understanding the biaxial stretching deformation mechanism of polymer films.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Cationic-porphyrin incorporated electrospun fibers for effective photo-inactivation of bacteria

Monisha Manathanath, Benu George, Juraij Kandiyil, Subramaniam Sujatha, Suchithra Tharamel Vasu, Sujith Athiyanathil, Unnikrishnan Gopalakrishna Panicker

Summary: This study explores a method that combines a biodegradable polymer scaffold with a photosensitizer for antibacterial photodynamic therapy. The results show a high inhibition rate against E. coli and S. aureus using this method.

MATERIALS TODAY COMMUNICATIONS (2024)

Article Materials Science, Multidisciplinary

Determining the best structure for an artificial neural network to model the dynamic viscosity of MWCNT-ZnO (25:75)/SAE 10W40 oil nano-lubricant

Mohammad Hemmat Esfe, S. Ali Eftekhari, S. Mohammad Sajadi, Mohammad Hashemian, Soheil Salahshour, Seyed Majid Motallebi

Summary: In this study, an artificial neural network was used to predict the dynamic viscosity of MWCNT-ZnO (25:75)/SAE 10W40 oil nano-lubricant. The temperature, shear rate, and solid volume fraction were found to have significant effects on the dynamic viscosity, with shear rate being the most influential parameter.

MATERIALS TODAY COMMUNICATIONS (2024)