4.7 Article

Numerical investigation of the thermophysical characteristics of the mid-and-low temperature solar receiver/reactor for hydrogen production

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 97, Issue -, Pages 379-390

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2016.02.012

Keywords

Solar hydrogen production; Solar receiver/reactor; Methanol steam reforming; Mathematical model

Funding

  1. National Natural Science Foundation of China [51276214, 51236008]
  2. Chinese Academy of Sciences

Ask authors/readers for more resources

With the considerations of the complex kinetic mechanisms of the methanol steam reforming using Cu/ZnO/Al2O3 catalyst, in this paper a multiphysics coupling model that integrates the mass, momentum and energy conservation governing equations is proposed to investigate the thermophysical performances of the mid-and-low temperature solar receiver/reactor for hydrogen production. The factors influencing the hydrogen production and temperature distributions of the catalyst bed, including the diameter of the receiver/reactor, the non-uniform distribution of the solar flux and the porosity of the catalyst bed, are numerically studied. The temperature distributions, mole fractions of the components and reaction rates are obtained. The influence rules of the diameter of the receiver/reactor tube on the performances of the receiver/reactor are revealed. The non-uniform distribution of the solar flux has a significant influence on the cross-sectional temperature difference of the receiver/reactor tube, the catalyst bed and the temperature rise of the catalyst bed, while has a slight impact on the methanol conversion and the collector efficiency. The effect mechanisms of the porosity on the performances of the receiver/reactor are revealed. The research findings provide a fundamental reference for the development of the mid-and-low temperature solar receiver/reactor. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available