4.7 Article

Capillary valve effect during slow drying of porous media

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2015.11.004

Keywords

Drying of porous media; Pore network model; Capillary valve effect; PDMS microfluidic network; Image processing techniques

Funding

  1. National Natural Science Foundation of China [51306124]
  2. Natural Science Foundation of Shanghai City [13ZR1458300]
  3. Alexander von Humboldt Foundation

Ask authors/readers for more resources

In this paper, a pore network model, which accounts for the capillary valve effect induced by the sudden geometrical expansion of the void space, is developed for slow drying of porous media. To validate the developed model, an optical drying experiment is conducted with a two-dimensional Polydimethylsiloxane microfluidic network composed of regular pores and throats. It is revealed that if the capillary valve effect is considered in the model, better agreement is obtained between numerical simulation and experimental data. If this effect is not incorporated into the model, however, more isolated filled throats and more liquid clusters are predicted as compared to the experimental results. Comparison between pore network simulation and experimental data clearly shows that the capillary valve effect must be taken into account in order to understand pore-scale processes during drying of porous media. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage

Yiguang Zhou, Shuhao Xiao, Jinxia Jiang, Rui Wu, Xiaobin Niu, Jun Song Chen

Summary: The study shows that the Li4Ti5O12/rutile TiO2 heterostructured nanorods exhibit improved high-rate performance and capacity retention, thanks to the constructed interface between the two materials.

NANO RESEARCH (2023)

Article Engineering, Chemical

Formulation of Nanostructured Heteroaggregates by Fluidization Technologies

Jialin Men, Subash Reddy Kolan, Ali Massomi, Torsten Hoffmann, Nat Jochen Schmidt, Evangelos Tsotsas, Andreas Bueck

Summary: This study presents the formulation of nanostructured heteroaggregates using the principle of fluidization and demonstrates the feasibility of two technologies, spouted bed and opposed jet fluidized bed. Intraaggregate mixing of constituents is evaluated using SEM-EDX.

CHEMIE INGENIEUR TECHNIK (2023)

Article Engineering, Chemical

Combined effect of acoustic field and gas absorption on evaporation of slurry droplet

Yehonatan David Pour, Boris Krasovitov, Andrew Fominykh, Ziba Hashemloo, Abdolreza Kharaghani, Evangelos Tsotsas, Avi Levy

Summary: This study developed a model to investigate the convective heat and mass transfer of an acoustically levitated slurry droplet that evaporates in an atmosphere containing air, water vapor, and soluble gas. The model considered various factors such as acoustic streaming, forced convection, and non-isothermal gas absorption. The results showed that the formation time of a porous shell decreased with increasing sound pressure level (SPL) and increased with increasing frequency.

DRYING TECHNOLOGY (2023)

Article Engineering, Environmental

Homogeneously distributed heterostructured interfaces in rice panicle-like SbBi-Bi2Se3-Sb2Se3 nanowalls for robust sodium storage

Xinyan Li, Shuhao Xiao, Dengji Guo, Jinxia Jiang, Xiaobin Niu, Rui Wu, Taisong Pan, Jun Song Chen

Summary: This study presents a template-free electrodeposition method for the growth of SbBi-Se self-supported nanowall arrays on copper substrates. The resulting heterostructured material exhibits uniformly dispersed phases and interfaces, which facilitate sodium ion diffusion and electronic conduction. The material demonstrates enhanced high-rate performance and superior cyclic retention, making it a promising candidate for sodium-ion battery applications.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Chemical

Investigation of Island Growth on Fluidized Particles Coated by Means of Aerosol

Serap Akbas, Kaicheng Chen, Torsten Hoffmann, Franziska Scheffler, Evangelos Tsotsas

Summary: In this study, an aerosol fluidized bed was used to coat particles with sodium benzoate solution droplets. The coverage of the coated particles was evaluated using scanning electron microscope pictures analyzed by MATLAB image processing. Monte Carlo simulation was employed to describe the coating process. The preferential deposition of droplets on already occupied positions was identified as the main reason for island growth on particles.

PROCESSES (2023)

Article Engineering, Chemical

Influence of Particle Shape on Tortuosity of Non-Spherical Particle Packed Beds

Simson Julian Rodrigues, Nicole Vorhauer-Huget, Thomas Richter, Evangelos Tsotsas

Summary: Tortuosity, an important factor in packed beds or porous media, affects mass transport, thermal and electric conductivity. Current tortuosity models lack consideration for various particle shapes. This study proposes a new model that predicts tortuosity based on sphericity and porosity, demonstrating significant effects on thermal conductivity in different particle shapes. The new model shows superior performance in the porosity range of 0.3 to 0.4, making it an upgrade to the classical Zehner-Bauer-Schlunder (ZBS) model.

PROCESSES (2023)

Article Chemistry, Physical

Renovating phase constitution and construction of Pt nanocubes for electrocatalysis of methanol oxidation via a solvothermal-induced strong metal-support interaction

Yi Wang, Zhaohong Li, Xingqun Zheng, Rui Wu, Jianfeng Song, Yulin Chen, Xinzhe Cao, Yao Nie

Summary: Strong metal-support interaction (SMSI) plays an important role in tuning catalytic behavior by facilitating migration of reducible oxides from the support onto loaded metal surfaces and alloying of the guest metal with the metal component in the support. However, the conventional high-temperature redox treatment for SMSI is limited in achieving simultaneous occurrence of oxide migration and alloying mechanisms, which restricts its application in electrocatalysis. In this study, a low-temperature solvothermal-induced SMSI is established in the CeCuOx/C supported Pt system, leading to the partial encapsulation of supported Pt by CeOx and the alloying of Cu2+ in the substrate with guest Pt. This encapsulation and alloying processes significantly improve the catalysis configuration and restructure the geometric/electronic state of interfacial Pt atoms, resulting in enhanced performance for methanol oxidation reaction (MOR).

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Zinc-cobalt-bimetallic catalyst on three-dimensional ordered nitrogen-doped porous carbon for high-performance lithium-selenium batteries

Qi Zhou, Xueqiang Qi, Yiguang Zhou, Junyi Li, Jinxia Jiang, Hanchao Li, Xiaobin Niu, Rui Wu, Jun Song Chen

Summary: Lithium-selenium (Li-Se) batteries have attracted widely attention due to their high volume specific capacity and good electronic conductivity of selenium. However, the rapid capacity fading, high volume changes and shuttle effect of lithium polyselenides (LiPSes) limit its further application. In this study, a zinc-cobalt bimetallic catalysts on nitrogen-doped 3D ordered porous carbon (ZnCo-NC) was constructed and applied as cathode for Li-Se batteries, showing significantly improved performance compared to single-metal counterparts.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Materials Science, Multidisciplinary

Three-dimensional ordered porous N-doped carbon-supported accessible Ni-Nx active sites for efficient CO2 electroreduction

Si-Jia Zheng, Hua Cheng, Jin Yu, Qin Bie, Jing-Dong Chen, Feng Wang, Rui Wu, Daniel John Blackwood, Jun-Song Chen

Summary: A three-dimensional ordered porous nitrogen-doped carbon-supported Ni-N-x catalyst has been synthesized by direct pyrolysis of a mixture of SiO2, polyvinyl pyrrolidone, nickel-phenanthroline complex, followed by the removal of the SiO2 templates. The optimized catalyst exhibits a high CO Faradaic efficiency above 85% and a large CO current density of 16.2 mA.cm(-2), demonstrating superior CO2RR performance.

RARE METALS (2023)

Article Chemistry, Physical

Synergistic cooperation between atomically dispersed Zn and Fe on porous nitrogen-doped carbon for boosting oxygen reduction reaction

Chuang Fu, Xueqiang Qi, Lei Zhao, Tingting Yang, Qian Xue, Zhaozhao Zhu, Pei Xiong, Jinxia Jiang, Xuguang An, Haiyuan Chen, Jun Song Chen, Andreu Cabot, Rui Wu

Summary: A dual-atom catalyst, Zn/Fe-NC, is synthesized through pyrolysis of PVP coated on Fe-doped ZIF-8, and it shows outstanding activity for oxygen reduction reaction (ORR) with high half-wave potential, excellent stability, and resistance to methanol. Density functional theory calculation reveals that the ORR overpotential is only 0.282 V, and the down-shifted d band center of active Fe affected by Zn alleviates the adsorption of OH* intermediates, thus promoting the overall ORR electrocatalytic activity. Moreover, zinc-air batteries with Zn/Fe-NC catalyst as oxygen cathode demonstrate remarkable power density and specific capacity for practical applications.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Pharmacology & Pharmacy

A Non-Isothermal Pore Network Model of Primary Freeze Drying

Maximilian Thomik, Felix Faber, Sebastian Gruber, Petra Foerst, Evangelos Tsotsas, Nicole Vorhauer-Huget

Summary: This study presents a non-isothermal pore network model with quasi-steady vapor transport and transient heat transfer for primary freeze drying. The physically based model allows for the investigation of correlations between spatially distributed structure and transport conditions. The study focuses on regular pore network lattices with homogeneous and bimodal pore size distributions.

PHARMACEUTICS (2023)

Article Materials Science, Multidisciplinary

Highly conductive S-doped FeSe2-xSx microsphere with high tap density for practical sodium storage

Shuhao Xiao, Jinxia Jiang, Ying Zhu, Jing Zhang, Hanchao Li, Rui Wu, Xiaobin Niu, Jiaqian Qin, Jun Song Chen

Summary: FeSe2-xSx microspheres were prepared by self-doping solvothermal method and gas phase selenization. S doping improved the Na adsorption and lowered the diffusion energy barrier, enhancing the electronic conductivity of FeSe2-xSx. The carbon-free nature of the microspheres resulted in a low specific surface area and high tap density, leading to a high initial columbic efficiency. Compared with pure FeSe2, FeSe2-xSx exhibited a high reversible capacity and enhanced rate performance. Additionally, FeSe2-xSx//NVP pouch cells achieved high energy and volumetric energy densities, demonstrating the potential applications of FeSe2-xSx microspheres.

ADVANCED POWDER MATERIALS (2023)

Article Chemistry, Multidisciplinary

Stabilizing highly active atomically dispersed NiN4Cl sites by Cl-doping for CO2 electroreduction

Zhao Li, Xueqiang Qi, Junjie Wang, Zhaozhao Zhu, Jinxia Jiang, Xiaobin Niu, Andreu Cabot, Jun Song Chen, Rui Wu

Summary: NiN4Cl-ClNC catalysts with atomically dispersed NiN4Cl active sites are prepared through a molten-salt-assisted pyrolysis strategy. The optimized catalyst shows excellent CO2 conversion activity and outstanding stability, delivering a high CO Faradaic efficiency of 98.7% and a remarkable CO partial current density of approximately 349.4 mA cm(-2) in flow-cell. The introduced axial Ni-Cl bond and ClC bond induce electronic delocalization, stabilizing Ni and facilitating the rate-determining step of COOH* formation.

SUSMAT (2023)

Article Physics, Applied

NiS2/FeS Heterostructured Nanoflowers for High-Performance Sodium Storage

Dong Yan, Shuhao Xiao, Xinyan Li, Jinxia Jiang, Qiyuan He, Hanchao Li, Jiaqian Qin, Rui Wu, Xiaobin Niu, Jun Song Chen

Summary: Transition metal sulfides have high potential for sodium storage, but their low conductivity and volume expansion affect their high-rate performance and cycling stability. In this work, a NiS2/FeS heterostructure was constructed by growing Ni-based layered double hydroxide nanosheets on Fe-based Prussian Blue nanocrystals followed by sulfurization. The resulting nanocomposite showed superior rate performance and cycle life compared to the heterostructure-free NiS2 and FeS.

ENERGY MATERIAL ADVANCES (2023)

Article Mechanics

Lattice Boltzmann simulations for the drying of porous media with gas-side convection-diffusion boundary

Dasika Prabhat Sourya, Debashis Panda, Abdolreza Kharaghani, Evangelos Tsotsas, Pardha S. Gurugubelli, Vikranth Kumar Surasani

Summary: This study employs the Shan-Chen lattice Boltzmann method (LBM) to simulate the drying process of a capillary porous medium, investigating the effects of convection-diffusion conditions on drying kinetics and comparing them with purely diffusion-dominated kinetics. Additionally, the study explores the influence of a temperature gradient on the stability and instability of the drying front, extending the capabilities of the lattice Boltzmann method for simulating convection-diffusion drying.

PHYSICS OF FLUIDS (2023)

Article Thermodynamics

Natural convection effects in insulation layers of spherical cryogenic storage tanks

Mahsa Taghavi, Swapnil Sharma, Vemuri Balakotaiah

Summary: This study investigates the natural convection effects in the insulation layers of spherical storage tanks and their impact on the tanks' performance. The permeability and Rayleigh number of the insulation material are considered as key factors. The results show that as the Rayleigh number increases, new convective cells emerge and cause the cold boundary to approach the external hot boundary. In the case of large temperature differences, multiple solutions may coexist.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental investigation on self-induced jet impingement boiling using R1336mzz(Z)

Jinyang Xu, Fangjun Hong, Chaoyang Zhang

Summary: This study introduces a self-induced jet impingement device for enhancing pool boiling performance in high power electronic cooling. Through visualization and parametric investigations, the effects of this device on pool boiling performance are studied, revealing the promotion of additional liquid supply and vapor exhausting. The flow rate of the liquid jet is found to positively impact boiling performance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment

Wenchao Ke, Yuan Liu, Fissha Biruke Teshome, Zhi Zeng

Summary: Underwater wet laser welding (UWLW) is a promising and labor-saving repair technique. A thermal multi-phase flow model was developed to study the heat transfer, fluid dynamics, and phase transitions during UWLW. The results show that UWLW creates a water keyhole, making the welding environment similar to in air laser welding.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Thermal conductivity analysis of natural fiber-derived porous thermal insulation materials

Xingrong Lian, Lin Tian, Zengyao Li, Xinpeng Zhao

Summary: This study investigates the heat transfer mechanisms in natural fiber-derived porous structures and finds that thermal radiation has a significant impact on the thermal conductivity in low-density regions, while natural convection rarely occurs. Insulation materials derived from micron-sized natural fibers can achieve minimum thermal conductivity at specific densities. Strategies to lower the thermal conductivity include increasing porosity and incorporating nanoscale pores using nanosize fibers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Ice accretion compositions in ice crystal icing

Yasir A. Malik, Kilian Koebschall, Stephan Bansmer, Cameron Tropea, Jeanette Hussong, Philippe Villedieu

Summary: Ice crystal icing is a significant hazard in aviation, and accurate modeling of sticking efficiency is essential. In this study, icing wind tunnel experiments were conducted to quantify the volumetric liquid water fraction, sticking efficiency, and maximum thickness of ice layers. Two measurement techniques, calorimetry and capacitive measurements, were used to measure the liquid water content and distribution in the ice layers. The experiments showed that increasing wet bulb temperatures and substrate heat flux significantly increased sticking efficiency and maximum ice layer thickness.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Mechanisms for improving fin heat dissipation through the oscillatory airflow induced by vibrating blades

Jinqi Hu, Tongtong Geng, Kun Wang, Yuanhong Fan, Chunhua Min, Hsien Chin Su

Summary: This study experimentally examined the heat dissipation of vibrating fans and demonstrated its inherent mechanism through numerical simulation. The results showed that the flow fields induced by the vibrating blades exhibited pulsating features and formed large-scale and small-scale vortical structures, significantly improving heat dissipation. The study also identified the impacts of different blade structures and developed a trapezoidal-folding blade, which effectively reduced the maximum temperature of the heat source and alleviated high-temperature failure crisis.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Molecular dynamics simulation of interfacial heat transfer behavior during the boiling of low-boiling-point organic fluid

Dan-Dan Su, Xiao-Bin Li, Hong-Na Zhang, Feng-Chen Li

Summary: The boiling heat transfer of low-boiling-point working fluid is a common heat dissipation technology in electronic equipment cooling. This study analyzed the interfacial boiling behavior of R134a under different conditions and found that factors such as the initial thickness of the liquid film, solid-liquid interaction force, and initial temperature significantly affect the boiling mode and thermal resistance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

A unified lattice Boltzmann- phase field scheme for simulations of solutal dendrite growth in the presence of melt convection

Jinyi Wu, Dongke Sun, Wei Chen, Zhenhua Chai

Summary: A unified lattice Boltzmann-phase field scheme is proposed to simulate dendrite growth of binary alloys in the presence of melt convection. The effects of various factors on the growth are investigated numerically, and the model is validated through comparisons and examinations.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study of the temperature characteristics of the main cables and slings in suspension bridge fires

Shaokun Ge, Ya Ni, Fubao Zhou, Wangzhaonan Shen, Jia Li, Fengqi Guo, Bobo Shi

Summary: This study investigated the temperature distribution of main cables in a suspension bridge during fire scenarios and proposed a prediction model for the maximum temperature of cables in different lane fires. The results showed that vehicle fires in the emergency lane posed a greater thermal threat to the cables.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Two-phase flow and heat transfer on a cylinder via low-velocity jet impact

Shuang-Ying Wu, Shi-Yao Zhou, Lan Xiao, Jia Luo

Summary: This paper investigates the two-phase flow and heat transfer characteristics of low-velocity jet impacting on a cylindrical surface. The study reveals that the heat transfer regimes are non-phase transition and nucleate boiling with the increase of heat transfer rate. The effects of jet impact height and outlet velocity on local surface temperatures are pronounced at the non-phase transition stage. The growth rates of heat transfer rate and liquid loss rate increase significantly from the non-phase transition to nucleate boiling stage.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Investigation on natural to ventilated cavitation considering the air-vapor interactions by Merging theory with insight on air jet location/rate effect

Emad Hasani Malekshah, Wlodzimierz Wlodzimierz, Miros law Majkut

Summary: Cavitation has significant practical importance and can be controlled by air injection. This study investigates the natural to ventilated cavitation process around a hydrofoil through numerical and experimental methods. The results show that the location and rate of air injection have a meaningful impact on the characteristics of cavitation.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental and numerical investigation on the influence of wall deformations on mixing quality of a Multifunctional Heat Exchanger/Reactor (MHER)

Feriel Yahiat, Pascale Bouvier, Antoine Beauvillier, Serge Russeil, Christophe Andre, Daniel Bougeard

Summary: This study explores the enhancement of mixing performance in laminar flow equipment by investigating the generation of chaotic advection using wall deformations in annular geometries. The findings demonstrate that the combined geometry can achieve perfect mixing at various Reynolds numbers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study on anti-frost property and edge effect of superhydrophobic surface with millimeter-scale geometries

Hui He, Ning Lyu, Caihua Liang, Feng Wang, Xiaosong Zhang

Summary: This study investigates the condensation, frosting, and defrosting processes on superhydrophobic surfaces with millimeter-scale structures. The results reveal that the structures can influence the growth and removal of frost crystals, with the bottom grooves creating a frost-free zone and conical edges promoting higher frost crystal heights. Two effective methods for defrosting are observed: hand-lifting the groove and airfoil retraction contraction on protruding structures. This research provides valuable insights into frost formation and defrosting on millimeter-structured superhydrophobic surfaces, with potential applications in anti-frost engineering.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Controlling heat capacity in a thermal concentrator using metamaterials: Numerical and experimental studies

Thiwanka Arepolage, Christophe Verdy, Thibaut Sylvestre, Aymeric Leray, Sebastien Euphrasie

Summary: This study developed two thermal concentrators, one with a 2D design of uniform thickness and another with a 3D design, using the coordinate transformation technique and metamaterials. By structuring the thermal conductor, the desired local density-heat capacity product and anisotropic thermal conductivities were achieved. The homogenized thermal conductivities were obtained from finite element simulations and cylindrical symmetry consideration. A 3D concentrator was fabricated using 3D metal printing and characterized using a thermal camera. Compared to devices that solely consider anisotropic conductivities, the time evolution characteristics of the metadevice designed with coordinate transformation were closer to those of an ideal concentrator.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Supercritical heat transfer of CO2 in horizontal tube emphasizing pseudo-boiling and stratification effects

Liangyuan Cheng, Qingyang Wang, Jinliang Xu

Summary: In this study, we investigated the supercritical heat transfer of CO2 in a horizontal tube with a diameter of 10.0 mm, covering a wide range of pressures, mass fluxes, and heat fluxes. The study revealed a non-monotonic increase in wall temperatures along the flow direction and observed both positive and negative wall temperature differences between the bottom and top tube. The findings were explained by the thermal conduction in the solid wall interacting with the stratified-wavy flow in the tube.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)