4.7 Article

Effects of structural parameters on fluid flow and heat transfer characteristics in microchannel with offset zigzag grooves in sidewall

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 101, Issue -, Pages 427-435

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2016.04.091

Keywords

Microchannel heat sink; Offset zigzag channel; Heat transfer; Fluid flow; Performance evaluation

Funding

  1. Beijing Natural Science Foundation [3142004]
  2. National Natural Science Foundation of China [51576005]

Ask authors/readers for more resources

With the rapid development of large data center, the required power consumption increases sharply. The thermal management of that accounts for about 33% of energy consumption. Single phase liquid convection heat transfer of microchannel heat sink has been thought as one of the most promising methods. For energy efficient cooling, optimized microchannel structures is one important approach. Hence, the novel offset zigzag microchannnel is proposed and optimized for inlet Reynolds number ranging from 200-800 in this paper. The heat sink is composed of 30 parallel channels, and basic structure parameters of rectangular channel are width of 0.1 mm, depth of 0.3 mm, length of 5 mm and pitch of 0.2 mm. The numerical model considers entrance effect, viscous heating and the temperature-dependent thermal-physical properties. In order to study the influence of geometry on flow and heat transfer characteristics, two non-dimensional variables are defined, such as the length ratio of zigzag length to channel length (alpha) and the length ratio of zigzag expansion to zigzag length (gamma). Results indicate the zigzag channel can effectively prevent the rise of heat surface temperature along the flow direction and increase the minimum temperature, which improves the temperature distribution uniformity. Under Re-in = 650 and alpha = 0.04, the minimum temperature increases from 309.9 K to 310.1 K and maximum temperature decreases from 324.02 K to 318.91 K. For 0.04 <= alpha < 0.1 and alpha < 0.04 of Re-in < 500, the thermal characteristic is enhanced and the flow resistance also is reduced. Compared with rectangle channel, the maximum temperature and pressure drop of zigzag channel with alpha = 0.04 of Re-in = 650 are also reduced from 324.02 K to 318.76 K and 29.81 kPa to 26.75 kPa, respectively. It can be interpreted that with the decrease of alpha, the porosity and convection heat transfer areas are increased and turbulence intensity of fluid flow is enhanced. The smaller gamma is more favorable for the enhancement of heat transfer except for gamma = 0 due to the fluid stagnation at the bottom of zigzag cavity. However, compared with rectangular microchannel, heat transfer is enhanced for all cases and flow resistance is decreased besides gamma = 0.1 of Re-in > 500. For gamma = 0 of Re-in = 650, the maximum temperature and pressure drop are reduced from 324.02 K to 318.01 K and 298.81 kPa to 27.91 kPa, respectively. The overall thermal performance is measured with total thermal resistance vs pumping power. The best performance of offset zigzag microchannel is found at alpha = 0.04 and gamma = 0.1. For Re-in = 800, the maximum temperature of heat surface is decreased 5.65 K, the minimum increased 0.36 K, and pumping power is decreased 1.4%. And thermal resistance is reduced by 17.4% at the P-p = 0.167 W. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Thermodynamics

Heat Transfer Characteristics and Flow Visualization during Flow Boiling of Acetone in Semi-Open Multi-Microchannels

Guodong Xia, Yue Cheng, Lixin Cheng, Yifan Li

HEAT TRANSFER ENGINEERING (2019)

Article Thermodynamics

Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall

G. D. Xia, Y. X. Tang, L. X. Zong, D. D. Ma, Y. T. Jia, R. Z. Rong

INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER (2019)

Article Thermodynamics

Experimental study and dynamic simulation of the continuous two-phase instable boiling in multiple parallel microchannels

Guodong Xia, Yuanzheng Lv, Lixin Cheng, Dandan Ma, Yuting Jia

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2019)

Article Thermodynamics

Experimental study on the pressure drop oscillation characteristics of the flow boiling instability with FC-72 in parallel rectangle microchannels

Yuanzheng Lv, Guodong Xia, Lixin Cheng, Dandan Ma

INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER (2019)

Article Thermodynamics

Flow boiling instability characteristics in microchannels with porous-wall

L. X. Zong, G. D. Xia, Y. T. Jia, L. Liu, D. D. Ma, J. Wang

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2020)

Article Thermodynamics

Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins

Y. F. Li, G. D. Xia, D. D. Ma, J. L. Yang, W. Li

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2020)

Article Chemistry, Physical

Enhanced Effect of Negative Differential Thermal Resistance in Nanoscale Confined Structure with Nanopatterned Surfaces

Fan Li, Jun Wang, Guodong Xia

JOURNAL OF PHYSICAL CHEMISTRY C (2020)

Article Mechanics

Self-propulsion of Janus particles in the free molecular regime

Kexue Zhang, Liyuan Xu, Yunyun Li, Fabio Marchesoni, Jun Wang, Guodong Xia

Summary: This study investigates the self-propulsion of a Janus particle suspended in a dilute gas at equilibrium and confirms the analytical results through numerical simulations.

PHYSICS OF FLUIDS (2022)

Article Mechanics

Negative thermophoresis of nanoparticles in liquids

Wangwang Liu, Jie Cui, Jun Wang, Guodong Xia, Zhigang Li

Summary: In this study, the negative thermophoresis of nanoparticles in liquids, which is usually from low to high temperature, is investigated using molecular dynamics simulations. The strength of solid-liquid intermolecular coupling was found to have a significant effect on the direction and magnitude of the thermophoretic force. Negative thermophoresis is induced by a density gradient that pushes the particles from high to low density. The sign change of the averaged potential mean force for the interfacial layer can be used as a criterion to predict the occurrence of negative thermophoresis. These findings provide insights for the microscopic manipulation of nanoparticles.

PHYSICS OF FLUIDS (2023)

Article Mechanics

Effect of inter-pore interference on liquid evaporation rates from nanopores by direct simulation Monte Carlo

Ran Li, Ziqing Yan, Guodong Xia

Summary: This study reports a novel investigation of the inter-pore interference effect in nano-porous evaporation, elucidating the changes in the net evaporation rate from individual nanopores when the inter-pore distance, neighboring nanopore diameter, or liquid temperature were varied. Molecular simulation results reveal that reducing inter-pore distance can enhance evaporation rate by increasing vapor convection effect and suppressing condensation flux. This interference effect is more pronounced at lower evaporation intensity, with the evaporation flux differing by up to 25% from the one-dimensional case.

PHYSICS OF FLUIDS (2023)

Article Mechanics

Thermophoresis of nanoparticles in the transition regime

Wangwang Liu, Jun Wang, Guodong Xia, Zhigang Li

Summary: The thermophoresis of nanoparticles suspended in gas in the transition regime was investigated through molecular dynamics simulations. It was found that there was a significant discrepancy between the simulation results and theoretical predictions for the thermophoretic force, which was attributed to the adsorption of gas molecules on nanoparticles and the gas-particle non-rigid body collisions. By using the effective particle radius, the simulation results and Talbot et al.'s equation were found to agree with each other. The investigation presented in this paper provides guidance for the application of nanoparticles in aerosol science.

PHYSICS OF FLUIDS (2023)

Article Physics, Fluids & Plasmas

Drag forces on nanoparticles in the free-molecule regime: Effect of the particle temperature

Jun Wang, Junjie Su, Guodong Xia

PHYSICAL REVIEW E (2020)

Article Chemistry, Multidisciplinary

Negative differential thermal resistance through nanoscale solid-fluid-solid sandwiched structures

Fan Li, Jun Wang, Guodong Xia, Zhigang Li

NANOSCALE (2019)

Article Thermodynamics

Natural convection effects in insulation layers of spherical cryogenic storage tanks

Mahsa Taghavi, Swapnil Sharma, Vemuri Balakotaiah

Summary: This study investigates the natural convection effects in the insulation layers of spherical storage tanks and their impact on the tanks' performance. The permeability and Rayleigh number of the insulation material are considered as key factors. The results show that as the Rayleigh number increases, new convective cells emerge and cause the cold boundary to approach the external hot boundary. In the case of large temperature differences, multiple solutions may coexist.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental investigation on self-induced jet impingement boiling using R1336mzz(Z)

Jinyang Xu, Fangjun Hong, Chaoyang Zhang

Summary: This study introduces a self-induced jet impingement device for enhancing pool boiling performance in high power electronic cooling. Through visualization and parametric investigations, the effects of this device on pool boiling performance are studied, revealing the promotion of additional liquid supply and vapor exhausting. The flow rate of the liquid jet is found to positively impact boiling performance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment

Wenchao Ke, Yuan Liu, Fissha Biruke Teshome, Zhi Zeng

Summary: Underwater wet laser welding (UWLW) is a promising and labor-saving repair technique. A thermal multi-phase flow model was developed to study the heat transfer, fluid dynamics, and phase transitions during UWLW. The results show that UWLW creates a water keyhole, making the welding environment similar to in air laser welding.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Thermal conductivity analysis of natural fiber-derived porous thermal insulation materials

Xingrong Lian, Lin Tian, Zengyao Li, Xinpeng Zhao

Summary: This study investigates the heat transfer mechanisms in natural fiber-derived porous structures and finds that thermal radiation has a significant impact on the thermal conductivity in low-density regions, while natural convection rarely occurs. Insulation materials derived from micron-sized natural fibers can achieve minimum thermal conductivity at specific densities. Strategies to lower the thermal conductivity include increasing porosity and incorporating nanoscale pores using nanosize fibers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Ice accretion compositions in ice crystal icing

Yasir A. Malik, Kilian Koebschall, Stephan Bansmer, Cameron Tropea, Jeanette Hussong, Philippe Villedieu

Summary: Ice crystal icing is a significant hazard in aviation, and accurate modeling of sticking efficiency is essential. In this study, icing wind tunnel experiments were conducted to quantify the volumetric liquid water fraction, sticking efficiency, and maximum thickness of ice layers. Two measurement techniques, calorimetry and capacitive measurements, were used to measure the liquid water content and distribution in the ice layers. The experiments showed that increasing wet bulb temperatures and substrate heat flux significantly increased sticking efficiency and maximum ice layer thickness.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Mechanisms for improving fin heat dissipation through the oscillatory airflow induced by vibrating blades

Jinqi Hu, Tongtong Geng, Kun Wang, Yuanhong Fan, Chunhua Min, Hsien Chin Su

Summary: This study experimentally examined the heat dissipation of vibrating fans and demonstrated its inherent mechanism through numerical simulation. The results showed that the flow fields induced by the vibrating blades exhibited pulsating features and formed large-scale and small-scale vortical structures, significantly improving heat dissipation. The study also identified the impacts of different blade structures and developed a trapezoidal-folding blade, which effectively reduced the maximum temperature of the heat source and alleviated high-temperature failure crisis.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Molecular dynamics simulation of interfacial heat transfer behavior during the boiling of low-boiling-point organic fluid

Dan-Dan Su, Xiao-Bin Li, Hong-Na Zhang, Feng-Chen Li

Summary: The boiling heat transfer of low-boiling-point working fluid is a common heat dissipation technology in electronic equipment cooling. This study analyzed the interfacial boiling behavior of R134a under different conditions and found that factors such as the initial thickness of the liquid film, solid-liquid interaction force, and initial temperature significantly affect the boiling mode and thermal resistance.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

A unified lattice Boltzmann- phase field scheme for simulations of solutal dendrite growth in the presence of melt convection

Jinyi Wu, Dongke Sun, Wei Chen, Zhenhua Chai

Summary: A unified lattice Boltzmann-phase field scheme is proposed to simulate dendrite growth of binary alloys in the presence of melt convection. The effects of various factors on the growth are investigated numerically, and the model is validated through comparisons and examinations.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study of the temperature characteristics of the main cables and slings in suspension bridge fires

Shaokun Ge, Ya Ni, Fubao Zhou, Wangzhaonan Shen, Jia Li, Fengqi Guo, Bobo Shi

Summary: This study investigated the temperature distribution of main cables in a suspension bridge during fire scenarios and proposed a prediction model for the maximum temperature of cables in different lane fires. The results showed that vehicle fires in the emergency lane posed a greater thermal threat to the cables.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Two-phase flow and heat transfer on a cylinder via low-velocity jet impact

Shuang-Ying Wu, Shi-Yao Zhou, Lan Xiao, Jia Luo

Summary: This paper investigates the two-phase flow and heat transfer characteristics of low-velocity jet impacting on a cylindrical surface. The study reveals that the heat transfer regimes are non-phase transition and nucleate boiling with the increase of heat transfer rate. The effects of jet impact height and outlet velocity on local surface temperatures are pronounced at the non-phase transition stage. The growth rates of heat transfer rate and liquid loss rate increase significantly from the non-phase transition to nucleate boiling stage.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Investigation on natural to ventilated cavitation considering the air-vapor interactions by Merging theory with insight on air jet location/rate effect

Emad Hasani Malekshah, Wlodzimierz Wlodzimierz, Miros law Majkut

Summary: Cavitation has significant practical importance and can be controlled by air injection. This study investigates the natural to ventilated cavitation process around a hydrofoil through numerical and experimental methods. The results show that the location and rate of air injection have a meaningful impact on the characteristics of cavitation.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental and numerical investigation on the influence of wall deformations on mixing quality of a Multifunctional Heat Exchanger/Reactor (MHER)

Feriel Yahiat, Pascale Bouvier, Antoine Beauvillier, Serge Russeil, Christophe Andre, Daniel Bougeard

Summary: This study explores the enhancement of mixing performance in laminar flow equipment by investigating the generation of chaotic advection using wall deformations in annular geometries. The findings demonstrate that the combined geometry can achieve perfect mixing at various Reynolds numbers.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Experimental study on anti-frost property and edge effect of superhydrophobic surface with millimeter-scale geometries

Hui He, Ning Lyu, Caihua Liang, Feng Wang, Xiaosong Zhang

Summary: This study investigates the condensation, frosting, and defrosting processes on superhydrophobic surfaces with millimeter-scale structures. The results reveal that the structures can influence the growth and removal of frost crystals, with the bottom grooves creating a frost-free zone and conical edges promoting higher frost crystal heights. Two effective methods for defrosting are observed: hand-lifting the groove and airfoil retraction contraction on protruding structures. This research provides valuable insights into frost formation and defrosting on millimeter-structured superhydrophobic surfaces, with potential applications in anti-frost engineering.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Controlling heat capacity in a thermal concentrator using metamaterials: Numerical and experimental studies

Thiwanka Arepolage, Christophe Verdy, Thibaut Sylvestre, Aymeric Leray, Sebastien Euphrasie

Summary: This study developed two thermal concentrators, one with a 2D design of uniform thickness and another with a 3D design, using the coordinate transformation technique and metamaterials. By structuring the thermal conductor, the desired local density-heat capacity product and anisotropic thermal conductivities were achieved. The homogenized thermal conductivities were obtained from finite element simulations and cylindrical symmetry consideration. A 3D concentrator was fabricated using 3D metal printing and characterized using a thermal camera. Compared to devices that solely consider anisotropic conductivities, the time evolution characteristics of the metadevice designed with coordinate transformation were closer to those of an ideal concentrator.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)

Article Thermodynamics

Supercritical heat transfer of CO2 in horizontal tube emphasizing pseudo-boiling and stratification effects

Liangyuan Cheng, Qingyang Wang, Jinliang Xu

Summary: In this study, we investigated the supercritical heat transfer of CO2 in a horizontal tube with a diameter of 10.0 mm, covering a wide range of pressures, mass fluxes, and heat fluxes. The study revealed a non-monotonic increase in wall temperatures along the flow direction and observed both positive and negative wall temperature differences between the bottom and top tube. The findings were explained by the thermal conduction in the solid wall interacting with the stratified-wavy flow in the tube.

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER (2024)