4.5 Article

CNS endothelial derived extracellular vesicles are biomarkers of active disease in multiple sclerosis

Journal

FLUIDS AND BARRIERS OF THE CNS
Volume 19, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12987-021-00299-4

Keywords

Multiple sclerosis; Extracellular vesicles; Blood-brain barrier; Endothelial cells; Biomarker

Categories

Funding

  1. National Multiple Sclerosis Society
  2. Myelin Repair Foundation
  3. Multiple Sclerosis Leadership and Innovation Network (MS-Link) - EMD Serono, Inc., USA (an affiliate of Merck KGaA, Darmstadt, Germany)

Ask authors/readers for more resources

This study developed a novel method to identify central nervous system (CNS) endothelial derived extracellular vesicles (EV) in human blood samples, and found that the plasma concentration of CNS endothelial derived EV was significantly increased in patients with active multiple sclerosis (MS), suggesting that it may serve as a biomarker of blood-brain barrier permeability and active disease in MS.
Background Multiple sclerosis (MS) is a complex, heterogenous disease characterized by inflammation, demyelination, and blood-brain barrier (BBB) permeability. Currently, active disease is determined by physician confirmed relapse or detection of contrast enhancing lesions via MRI indicative of BBB permeability. However, clinical confirmation of active disease can be cumbersome. As such, disease monitoring in MS could benefit from identification of an easily accessible biomarker of active disease. We believe extracellular vesicles (EV) isolated from plasma are excellent candidates to fulfill this need. Because of the critical role BBB permeability plays in MS pathogenesis and identification of active disease, we sought to identify EV originating from central nervous system (CNS) endothelial as biomarkers of active MS. Because endothelial cells secrete more EV when stimulated or injured, we hypothesized that circulating concentrations of CNS endothelial derived EV will be increased in MS patients with active disease. Methods To test this, we developed a novel method to identify EV originating from CNS endothelial cells isolated from patient plasma using flow cytometry. Endothelial derived EV were identified by the absence of lymphocyte or platelet markers CD3 and CD41, respectively, and positive expression of pan-endothelial markers CD31, CD105, or CD144. To determine if endothelial derived EV originated from CNS endothelial cells, EV expressing CD31, CD105, or CD144 were evaluated for expression of the myelin and lymphocyte protein MAL, a protein specifically expressed by CNS endothelial cells compared to endothelial cells of peripheral organs. Results Quality control experiments indicate that EV detected using our flow cytometry method are 0.2 to 1 micron in size. Flow cytometry analysis of EV isolated from 20 healthy controls, 16 relapsing-remitting MS (RRMS) patients with active disease not receiving disease modifying therapy, 14 RRMS patients with stable disease not receiving disease modifying therapy, 17 relapsing-RRMS patients with stable disease receiving natalizumab, and 14 RRMS patients with stable disease receiving ocrelizumab revealed a significant increase in the plasma concentration of CNS endothelial derived EV in patients with active disease compared to all other groups (p = 0.001). Conclusions: For the first time, we have identified a method to identify CNS endothelial derived EV in circulation from human blood samples. Results from our pilot study indicate that increased levels of CNS endothelial derived EV may be a biomarker of BBB permeability and active disease in MS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available