4.6 Review

SUMO Interacting Motifs: Structure and Function

Journal

CELLS
Volume 10, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/cells10112825

Keywords

SUMO; SUMO interacting motif; phase separation; DNA repair; host-pathogen interactions; histones; post-translational protein modification

Categories

Funding

  1. NIH [GM63596]

Ask authors/readers for more resources

SUMO modulates protein function by covalently conjugating to proteins and recruiting other cellular proteins. The recruitment involves SIM/SUMO interaction, where SIM consists of hydrophobic residues and binds to a hydrophobic groove in SUMO.
Small ubiquitin-related modifier (SUMO) is a member of the ubiquitin-related protein family. SUMO modulates protein function through covalent conjugation to lysine residues in a large number of proteins. Once covalently conjugated to a protein, SUMO often regulates that protein's function by recruiting other cellular proteins. Recruitment frequently involves a non-covalent interaction between SUMO and a SUMO-interacting motif (SIM) in the interacting protein. SIMs generally consist of a four-residue-long hydrophobic stretch of amino acids with aliphatic non-polar side chains flanked on one side by negatively charged amino acid residues. The SIM assumes an extended beta-strand-like conformation and binds to a conserved hydrophobic groove in SUMO. In addition to hydrophobic interactions between the SIM non-polar core and hydrophobic residues in the groove, the negatively charged residues in the SIM make favorable electrostatic contacts with positively charged residues in and around the groove. The SIM/SUMO interaction can be regulated by the phosphorylation of residues adjacent to the SIM hydrophobic core, which provide additional negative charges for favorable electrostatic interaction with SUMO. The SUMO interactome consists of hundreds or perhaps thousands of SIM-containing proteins, but we do not fully understand how each SUMOylated protein selects the set of SIM-containing proteins appropriate to its function. SIM/SUMO interactions have critical functions in a large number of essential cellular processes including the formation of membraneless organelles by liquid-liquid phase separation, epigenetic regulation of transcription through histone modification, DNA repair, and a variety of host-pathogen interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available