4.6 Article

Biosynthesized Silver Nanoparticles for Cancer Therapy and In Vivo Bioimaging

Journal

CANCERS
Volume 13, Issue 23, Pages -

Publisher

MDPI
DOI: 10.3390/cancers13236114

Keywords

silver nanoparticles; green chemistry approach; Zinnia elegans; cancer therapeutic; NIR bioimaging; nanomedicine

Categories

Funding

  1. CSIR [2021/124]
  2. DST Nano Mission-project [SR/NM/NS-1252/2013]

Ask authors/readers for more resources

This study demonstrates the design and development of biologically synthesized silver nanoparticles (AgZE) for cancer theranostics. AgZE shows biocompatibility and selective anticancer activity in various cancer cell lines. The nanoparticles exhibit fluorescence properties in the NIR region in mice, and biodistribution analysis shows the presence of silver in different vital organs. AgZE could be a potential cancer therapeutic agent and non-invasive imaging tool in the near future.
Simple Summary Chemotherapy, a conventional treatment strategy, is associated with several limitations. Alternatively, cancer nanotechnology offers new strategies for remedy from drug delivery and extending to therapeutics using nanoformulation. Recently, silver nanoparticles were utilized for different cancer theranostics. In this context, the current manuscript demonstrates the design and development of biologically synthesized silver nanoparticles (AgZE) and their applications for cancer theranostics. The synthesized AgZE is optimized and thoroughly characterized. The AgZE exhibits biocompatibility and selective anticancer activity towards the cancer cell lines established through various assays. The fluorescence properties of AgZE are observed in the NIR region (excitation: 710 nm, emission: 820 nm) in the normal and tumor bearing C57BL6/J mice. The silver of AgZE is found to be biodistributed in different vital organs as analyzed by ICPOES. Thereafter, these results highlight that AgZE could be an efficient cancer therapeutic and NIR based non-invasive imaging agent in the upcoming times. In the current communication, a simple, environmentally compatible, non-toxic green chemistry process is used for the development of silver nanoparticles (AgZE) by the reaction between silver nitrate (AgNO3) and the ethanolic leaf extract of Zinnia elegans (ZE). The optimization of AgZE is carried out using a series of experiments. Various physico-chemical techniques are utilized to characterize the nanomaterials. The cell viability assay of AgZE in normal cells (CHO, HEK-293T, EA.hy926, and H9c2) shows their biocompatible nature, which is supported by hemolytic assay using mouse RBC. Interestingly, the nanoparticles exhibited cytotoxicity towards different cancer cell lines (U-87, MCF-7, HeLa, PANC-1 and B16F10). The detailed anticancer activity of AgZE on human glioblastoma cell line (U-87) is exhibited through various in vitro assays. In vivo the AgZE illustrates anticancer activity by inhibiting blood vessel formation through CAM assay. Furthermore, the AgZE nanoparticles when intraperitoneally injected in C57BL6/J mice (with and without tumor) exhibit fluorescence properties in the NIR region (excitation: 710 nm, emission: 820 nm) evidenced by bioimaging studies. The AgZE biodistribution through ICPOES analysis illustrates the presence of silver in different vital organs. Considering all the results, AgZE could be useful as a potential cancer therapeutic agent, as well as an NIR based non-invasive imaging tool in near future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available