4.8 Article

High efficiency photoelectrochemical hydrogen generation using eco-friendly Cu doped Zn-In-Se colloidal quantum dots

Journal

NANO ENERGY
Volume 88, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2021.106220

Keywords

Quantum dots; Eco-friendly; Photoelectrochemical cell; Hydrogen generation; Carrier dynamics

Funding

  1. National Natural Science Foundation of China [52025061, 51776165]
  2. Royal SocietyNewton Advanced Fellowship [NAF\R1\191163]
  3. China Scholarship Council (CSC) [201706460021, 201706280247]
  4. China Postdoctoral Science Foundation [2020M683472]
  5. Natural Science Foundation of Shaanxi Province [2021JQ-040]
  6. Quebec Research Fund -Nature and Technologies (FRQNT)
  7. UNESCO Chair in MATECSS for a PDF Excellence Scholarship
  8. University of Electronic Science and Technology of China
  9. Natural Science and Engineering Research Council of Canada (NSERC)
  10. Canada Foundation for Innovation (CFI) for infrastructure and its operating funds
  11. Canada Research Chairs Program

Ask authors/readers for more resources

This study demonstrates the efficient hydrogen production by utilizing eco-friendly Cu-doped Zn-In-Se colloidal quantum dots in PEC cells, achieving unprecedented saturated photocurrent density under sunlight illumination. The optimized Cu dopant and Zn:In ratio significantly enhance light absorption, carrier injection rates/lifetime and the spatial separation of electron-hole pairs, showing promise for high efficiency and environmentally friendly solar-driven applications.
Photoelectrochemical (PEC) cells using colloidal quantum dots (QDs) as sensitizers are promising for efficient hydrogen (H-2) production, due to their low cost and to the size/shape/composition dependent optoelectronic properties of QDs. However, QDs that are typically used in PEC cell fabrication contain highly toxic heavy metals (e.g. Pb and Cd) cations, that limit commercial-scale applications. Herein, we synthesized eco-friendly Cu doped Zn-In-Se colloidal QDs and used them in PEC cells to efficiently produce H-2 from water. PEC cells fabricated with optimized Cu (5%) doped Zn-In-Se (Zn:In=1:4) QDs/TiO2 photoanodes yield an unprecedented saturated photocurrent density of 11.23 mA cm(-2) at 0.8 V vs. RHE under one sun illumination (AM 1.5, 100 mW.cm(-2)) and maintain similar to 60% of the initial photocurrent density value after 6000 s continuous illumination by using Na2S/Na2SO3 as hole scavenger. This new record value of photocurrent density from eco-friendly QDs based PEC cell demonstrates that an optimized amount of Cu dopant and Zn:In ratio significantly improves light absorption, carrier injection rates/lifetime and the spatial separation of electron-hole pairs. Our work indicates that Cu doped Zn-In-Se QDs can be used as efficient light harvesters to realize high efficiency, inexpensive and environmentally friendly solar-driven production of chemical fuels and other optoelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Physical

Rapid high-temperature treatment on graphitic carbon nitride for excellent photocatalytic H-2-evolution performance

Yazhou Zhang, Shichao Zong, Cheng Cheng, Jinwen Shi, Penghui Guo, Xiangjiu Guan, Bing Luo, Shaohua Shen, Liejin Guo

APPLIED CATALYSIS B-ENVIRONMENTAL (2018)

Article Chemistry, Physical

Facile preparation with high yield of a 3D porous graphitic carbon nitride for dramatically enhanced photocatalytic H-2 evolution under visible light

Bing Luo, Rui Song, Jiafeng Geng, Dengwei Jing, Yazhou Zhang

APPLIED CATALYSIS B-ENVIRONMENTAL (2018)

Article Chemistry, Physical

Strengthened spatial charge separation over Z-scheme heterojunction photocatalyst for efficient photocatalytic H2 evolution

Bing Luo, Rui Song, Jiafeng Geng, Dengwei Jing, Zhenxiong Huang

APPLIED SURFACE SCIENCE (2019)

Article Chemistry, Physical

Towards the prominent cocatalytic effect of ultra-small CoP particles anchored on g-C3N4 nanosheets for visible light driven photocatalytic H2 production

Bing Luo, Rui Song, Jiafeng Geng, Xiaohe Liu, Dengwei Jing, Menglong Wang, Cheng Cheng

APPLIED CATALYSIS B-ENVIRONMENTAL (2019)

Article Chemistry, Physical

Efficient NiSx cocatalyst to promote visible light photocatalytic H2 production over g-C3N4: A novel solvothermal synthesis method

Bing Luo, Rui Song, Zilong Zeng, Dengwei Jing

APPLIED SURFACE SCIENCE (2020)

Article Engineering, Chemical

Plasmon-induced photothermal effect of sub-10-nm Cu nanoparticles enables boosted full-spectrum solar H-2 production

Rui Song, Maochang Liu, Bing Luo, Jiafeng Geng, Dengwei Jing

AICHE JOURNAL (2020)

Article Chemistry, Physical

Efficient photothermocatalytic hydrogen production performance over a graphene-titanium dioxide hybrid nanomaterial

Lijing Ma, Bing Luo, Jiafeng Geng, Zhesong Huang, Liejin Guo

Summary: Graphene@TiO2 nanomaterials were prepared for photothermocatalytic H2 production, with significantly increased H2 evolution rate at elevated temperatures, attributed to enhanced diffusion rate and absorption of photon energy.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2021)

Article Engineering, Multidisciplinary

Determination of the real quantum yield of the heterogeneous photocatalytic H2 production reaction and insights

Dengwei Jing, Bing Luo, Huan Liu, Liejin Guo

Summary: The study established a setup to accurately measure the number of incident photons received by a photo-vessel and directly absorbed by photocatalysts, enabling simultaneous determination of QY and AQY. It was found that AQY was significantly smaller than QY, indicating that the true photocatalytic performance of the photocatalyst may have been underestimated in previous studies. This work is valuable for accurate evaluation of catalytic efficiency of a photocatalyst and contributes to the rapid development of the technology.

MEASUREMENT SCIENCE AND TECHNOLOGY (2021)

Review Energy & Fuels

State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts

Bing Luo, Yuxin Zhao, Dengwei Jing

Summary: Converting solar energy into hydrogen through photocatalytic water splitting is a promising approach to address energy demand and environmental issues. Developing efficient photocatalysts, such as graphitic carbon nitride, is crucial for improving energy conversion efficiency.

FRONTIERS IN ENERGY (2021)

Article Chemistry, Multidisciplinary

Hollow Carbon Sphere-Modified Graphitic Carbon Nitride for Efficient Photocatalytic H2 Production

Jinghua Li, Lunqiao Xiong, Bing Luo, Dengwei Jing, Jiamei Cao, Junwang Tang

Summary: A novel hybrid photocatalyst composed of NCS and CN has been prepared, showing efficient photocatalytic performance by promoting photoelectron transfer through a special coupling interface, which significantly improves the photocatalytic efficiency.

CHEMISTRY-A EUROPEAN JOURNAL (2021)

Article Materials Science, Multidisciplinary

Unlocking the effects of Cu doping in heavy-metal-free AgIn5S8 quantum dots for highly efficient photoelectrochemical solar energy conversion

Heng Guo, Jiabin Liu, Bing Luo, Xu Huang, Jian Yang, Haiyuan Chen, Li Shi, Xin Liu, Daniele Benetti, Ying Zhou, Gurpreet Singh Selopal, Federico Rosei, Zhiming Wang, Xiaobin Niu

Summary: The researchers have designed and synthesized Cu-doped AgIn5S8 (Cu-AIS) QDs, which contain Cu T-2 state sites between the Ag 4d and S 3p orbitals, adjustable bandgaps, and slowed photogenerated charge recombination compared to pristine AIS QDs.

JOURNAL OF MATERIALS CHEMISTRY C (2021)

Article Chemistry, Physical

Boosting photoelectrochemical hydrogen generation on Cu-doped AgIn5S8/ZnS colloidal quantum dot sensitized photoanodes via shell-layer homojunction defect passivation

Heng Guo, Bing Luo, Jing Wang, Bojun Wang, Xu Huang, Jian Yang, Wenxiao Gong, Ying Zhou, Xiaobin Niu

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Physical

In situsynthesis of ultrafine metallic MoO2/carbon nitride nanosheets for efficient photocatalytic hydrogen generation: a prominent cocatalytic effect

Xiao-He Liu, Yun-Xiao Yin, Fan Du, Ji-Rui Bai, Bing Luo, Cheng Cheng, Qing-Yun Chen, Chi He

CATALYSIS SCIENCE & TECHNOLOGY (2020)

Article Chemistry, Physical

Eco-friendly quantum dots for liquid luminescent solar concentrators

Xin Liu, Bing Luo, Jiabin Liu, Dengwei Jing, Daniele Benetti, Federico Rosei

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Physical

Gamma glycine enhances efficiency of organic hybrid piezoelectric-triboelectric nanogenerators

Sirinya Ukasi, Paritta Jutapukti, Chiranicha Ninthub, Nattapong Pinpru, Phakkhananan Pakawanit, Wanwilai Vittayakorn, Satana Pongampai, Naratip Vittayakorn, Thitirat Charoonsuk

Summary: This study explores the enhancement of electrical output of flexible hybrid piezoelectric-triboelectric nanogenerators by incorporating gamma-glycine into fully organic composites. The research demonstrates the importance of optimized concentrations of gamma-glycine and chitosan in achieving superior performance. The study identifies the critical content of gamma-glycine that leads to the highest output signal, and provides theoretical explanations for this observation.

NANO ENERGY (2024)

Article Chemistry, Physical

Portable triboelectric-electromagnetic hybrid biomechanical energy harvester for driving various functional light-emitting diodes with a wide range of wavelengths

Yoonsang Ra, Yu-seop Kim, Seonmo Yang, Namgyu Kang, Gyuwon Oh, Chungyeon Cho, Sangmin Lee, Dongwhi Choi

Summary: In this study, a portable energy harvester (STEP) was proposed to drive various functional LEDs using biomechanical energy. The roles and functionalities of a triboelectric nanogenerator (TENG) and electromagnetic generator (EMG) in the hybrid energy harvester were experimentally demonstrated, and the necessity of hybridization for LED-involved devices was described. The STEP showed promising potential as an effective energy supply strategy for various functional LEDs in related industries.

NANO ENERGY (2024)

Article Chemistry, Physical

Flexoelectrically augmented triboelectrification enabled self-power wireless smart home control system

Dae Sol Kong, Kyung Hoon Kim, Ying Chieh Hu, Jong Hun Kim, Inseo Kim, Jeongwan Lee, Joonhyuk Lee, Won Hyuk Shon, Hanjin Yoo, Chul-Un Ro, Seungsu Lee, Hyoungjeen Jeen, Minbaek Lee, Minseok Choi, Jong Hoon Jung

Summary: With the rapid development of the Internet of Things and artificial intelligence, smart home has emerged to fulfill the security, convenience, and energy-saving issues of modern life. A flexoelectric mica crystal is used to augment the finger touch-driven triboelectric output for operating a wireless and multichannel smart home controller. This work provides important ingredients for enhancing triboelectric output and realizing a convenient, multifunctional, cost-effective, and adaptable smart home control system without batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Enhance vortices vibration with Y-type bluff body to decrease arousing wind speed and extend range for flag triboelectric energy harvester

Yi Han, Fang Wu, Xiaozhen Du, Zihao Li, Haixiang Chen, Dongxing Guo, Junlei Wang, Hong Yu

Summary: This paper presents a novel type of triboelectric nanogenerator that utilizes wind energy, with a Y-type bluff body to enhance vibration and output power. The application of this generator successfully provides power for a wireless temperature and humidity sensor.

NANO ENERGY (2024)

Article Chemistry, Physical

Surface-interspersed nanoparticles induced cathode-electrolyte interphase enabling stable cycling of high-voltage LiCoO2

Wen Zhang, Fangyuan Cheng, Miao Chang, Yue Xu, Yuyu Li, Shixiong Sun, Liang Wang, Leimin Xu, Qing Li, Chun Fang, Meng Wang, Yuhao Lu, Jiantao Han, Yunhui Huang

Summary: This study successfully induced the formation of a uniform and robust CEI by constructing ZrO2 nano-rivets on the surface of LCO, stabilizing the surface of high-voltage LCO and facilitating lithium-ion diffusion.

NANO ENERGY (2024)

Article Chemistry, Physical

Asperity shape in flexoelectric/triboelectric contacts

Karl P. Olson, Laurence D. Marks

Summary: This paper investigates the role of contacting shapes in triboelectricity and provides scaling rules for designing energy harvesting devices.

NANO ENERGY (2024)

Article Chemistry, Physical

Externally motionless triboelectric nanogenerator based on vortex-induced rolling for omnidirectional wind energy harvesting

Jong-An Choi, Jingu Jeong, Mingyu Kang, Hee-Jin Ko, Taehoon Kim, Keun Park, Jongbaeg Kim, Soonjae Pyo

Summary: Wind-driven triboelectric nanogenerators (WTENGs) are a promising emerging technology for sustainable wind energy harvesting, offering high output performance, lightweight design, and compact dimensions. This study introduces an innovative WTENG design that leverages a rolling-based mechanism to achieve efficient omnidirectional wind energy harvesting.

NANO ENERGY (2024)

Article Chemistry, Physical

Flag-type hybrid nanogenerator utilizing flapping wakes for consistent high performance over an ultra-broad wind speed range

Liwei Dong, Qian Tang, Chaoyang Zhao, Guobiao Hu, Shuai Qu, Zicheng Liu, Yaowen Yang

Summary: This paper proposes a novel hybrid scheme for flag-type nanogenerators (FNGs) that enhances their performance and broadens their operational wind speed ranges by harnessing the synergistic potential of two aerodynamic behaviors. The proposed flag-type triboelectric-piezoelectric hybrid nanogenerator (FTPNG) integrates flapping piezoelectric flags (PEFs) and a fluttering triboelectric flag (TEF). The FTPNG achieves significant power generation and a broad wind speed range, surpassing other FNGs, making it suitable for various self-powered systems and Internet of Things applications.

NANO ENERGY (2024)

Review Chemistry, Physical

Marine biomaterial-based triboelectric nanogenerators: Insights and applications

Yunmeng Li, Xin Liu, Zewei Ren, Jianjun Luo, Chi Zhang, Changyong (Chase) Cao, Hua Yuan, Yaokun Pang

Summary: The demand for green and eco-friendly materials is growing due to increasing environmental concerns related to traditional petroleum-based products. Marine biomaterials have emerged as a promising alternative, thanks to their abundant availability, biocompatibility, biodegradability, and low toxicity. In this review, we discuss the development and applications of triboelectric nanogenerators (TENGs) based on marine biomaterials. The operational modes, foundational principles, intrinsic qualities, and advantages of marine biomaterials commonly used in TENG designs are highlighted. Approaches to enhance the efficacy of TENGs derived from marine biomaterials are also discussed, along with documented applications from existing literature. Furthermore, the existing challenges and future directions in marine biomaterial-inspired TENGs are explored.

NANO ENERGY (2024)

Article Chemistry, Physical

Pathway to high performance, low temperature thin-film solid oxide cells grown on porous anodised aluminium oxide

Matthew P. Wells, Adam J. Lovett, Yizhi Zhang, Zhongxia Shang, Kosova Kreka, Babak Bakhit, Haiyan Wang, Albert Tarancon, Judith L. MacManus-Driscoll

Summary: Reversible solid oxide cells (rSOCs) offer a promising solution to efficient energy conversion, but have been limited in portable power and electrolysis applications due to excessive polarisation resistance of the oxygen electrode at low temperatures. This study demonstrates the growth of symmetric and complete rSOC structures with reduced polarisation resistance by tuning oxygen vacancy through annealing, providing a promising route towards high-performance rSOC devices for portable power applications.

NANO ENERGY (2024)

Article Chemistry, Physical

Construction of low dielectric aqueous electrolyte with ethanol for highly stable Zn anode

Kangkang Bao, Minghui Wang, Yue Zheng, Panpan Wang, Liwen Yang, Yang Jin, Hui Wu, Bin Sun

Summary: This study utilizes ethanol as an electrolyte additive to modulate the migration of zinc ions and the surface structure of zinc anodes, resulting in improved capacity retention and cycle life of zinc-based aqueous batteries.

NANO ENERGY (2024)

Article Chemistry, Physical

Ultrathin nanolayer constituted by a natural polysaccharide achieves egg-box structured SnO2 nanoparticles toward efficient and stable perovskite solar cells

Haichao Yang, Wensi Cai, Ming Wang, Saif M. H. Qaid, Zhiyuan Xu, Huaxin Wang

Summary: The introduction of sodium alginate (SA) into perovskite solar cells improves the carrier dynamics, stability, and performance by inhibiting nonradiative recombination and retarded charge dynamics.

NANO ENERGY (2024)

Article Chemistry, Physical

All-in-one multifunctional and deformation-insensitive carbon nanotube nerve patches enabling on-demand interactions

Cuirong Zhang, Mingyuan Wei, Zihan Chen, Wansheng Lin, Shifan Yu, Yijing Xu, Chao Wei, Jinwei Zhang, Ziquan Guo, Yuanjin Zheng, Qingliang Liao, Xinqin Liao, Zhong Chen

Summary: Artificial Intelligence of Things (AIoT) aims to establish smart and informative interactions between humans and devices. However, common pixelated sensing arrays in AIoT applications present problems such as hard and brittle devices, complex structures, and low precision. This article introduces an innovative solution called the all-in-one intelligent semitransparent interactive nerve patch (AISI nerve patch), which integrates sensing, recognition, and transmission functionalities into a thin and flexible patch. The AISI nerve patch is semitransparent, allowing for accurate identification without affecting aesthetics, and it can be attached to any curved surface for intelligent and interactive applications. With rapid response time and high precision recognition, it enables the integration of artificial intelligence and achieves high recognition accuracy for further development of AIoT.

NANO ENERGY (2024)

Article Chemistry, Physical

Engineering anion defects of ternary V-S-Se layered cathodes for ultrafast zinc ion storage

Youcun Bai, Heng Zhang, Huijun Song, Chong Zhu, Lijin Yan, Qin Hu, Chang Ming Li

Summary: A novel stainless-steel supported lattice-mismatched V-S-Se layered compound with high selenium vacancy was synthesized by adjusting the molar ratio of sulfur to selenium. The introduction of selenium vacancies created additional redox peaks of sulfur, providing more mass transport channels and active sites for zinc ions. The specific capacity and cycle stability of the electrode were significantly improved, demonstrating great potential for practical applications and providing insights into the effects of defects on battery performance.

NANO ENERGY (2024)

Article Chemistry, Physical

Defect-management-induced multi-stimulus-responsive mechanoluminescence in Mn2+doped gallate compound

Yao Xiao, Puxian Xiong, Yakun Le, Zhenjie Lun, Kang Chen, Zhiduo Wang, Peishan Shao, Zhicong Chen, Dongdan Chen, Zhongmin Yang

Summary: This study successfully synthesized a material with multi-stimulus-responsive luminescence and confirmed the internal relationship between luminescence and defects by regulating the distribution and depth of defects. The dynamic process of multi-stimulus-responsive luminescence was validated by experimental and calculation results.

NANO ENERGY (2024)