4.8 Article

Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis

Journal

CELL REPORTS
Volume 38, Issue 4, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.celrep.2021.110195

Keywords

-

Categories

Funding

  1. NIH Office of Research Infrastructure Programs [P40 OD010440]
  2. ALS Finding A Cure
  3. ALS Association
  4. OVPR Brown University Seed Award research funds
  5. Kirac Foundation

Ask authors/readers for more resources

This study establishes ALS FUS mutant models in C. elegans and suggests that autophagy dysfunction may contribute to protein homeostasis and neuromuscular defects in ALS FUS animals.
How mutations in FUS lead to neuronal dysfunction in amyotrophic lateral sclerosis (ALS) patients remains unclear. To examine mechanisms underlying ALS FUS dysfunction, we generate C. elegans knockin models using CRISPR-Cas9-mediated genome editing, creating R524S and P525L ALS FUS models. Although FUS inclusions are not detected, ALS FUS animals show defective neuromuscular function and locomotion under stress. Unlike animals lacking the endogenous FUS ortholog, ALS FUS animals have impaired neuronal autophagy and increased SQST-1 accumulation in motor neurons. Loss of sqst-1, the C. elegans ortholog for ALS-linked, autophagy adaptor protein SQSTM1/p62, suppresses both neuromuscular and stress-induced locomotion defects in ALS FUS animals, but does not suppress neuronal autophagy defects. Therefore, autophagy dysfunction is upstream of, and not dependent on, SQSTM1 function in ALS FUS pathogenesis. Combined, our findings demonstrate that autophagy dysfunction likely contributes to protein homeostasis and neuromuscular defects in ALS FUS knockin animals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Biology

Early life adversity decreases pre-adolescent fear expression by accelerating amygdala PV cell development

Gabriela Manzano Nieves, Marilyn Bravo, Saba Baskoylu, Kevin G. Bath

ELIFE (2020)

Meeting Abstract Biophysics

A Mutation in the Intrinsivally Disordered Fragment of SK2 Channel Confers Ca2+ Hypersensitivity

Young Woo Nam, Saba N. Baskoylu, Meng Cui, Razan Orfali, Anne C. Hart, Miao Zhang

BIOPHYSICAL JOURNAL (2018)

No Data Available