4.7 Article

CFD-PBM and experimental investigation of a shear thinning fluid in a gas-liquid tank agitated by a helical ribbon impeller

Journal

SEPARATION AND PURIFICATION TECHNOLOGY
Volume 272, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.seppur.2021.118855

Keywords

CFD-PBM method; Stirred tank reactor; Non-Newtonian fluids; Mixing performance; Dual helical ribbon impeller

Ask authors/readers for more resources

This study investigates the hydrodynamic characteristics of a shear thinning fluid agitated in a 3D multiphase reactor using a dual helical ribbon impeller. Computational Fluid Dynamics (CFD) simulation and Population Balance Model (PBM) were employed to study gas-liquid interactions at different impeller speeds. Results showed that an increase in rotational speed intensifies bubble breakage and coalescence rates, while the formation of static vortices adversely affects mixing efficiency.
This study focuses on hydrodynamic characteristics of a shear thinning fluid agitated in a 3D multiphase reactor using a dual helical ribbon impeller. A combination of Computational Fluid Dynamics (CFD) simulation and Population Balance Model (PBM) were employed to study the gas-liquid interactions at various impeller speeds. The standard k - epsilon model and Eulerian multiphase approach were used to predict better quantities of turbulent flow parameters and its characteristics. Particle Image Velocimetry (PIV) was used to measure the velocity field for the model validation. Simulation results indicated that the bubble breakage and coalescence rate was intensified due to an increase in rotational speed. However, bubble breakage is still the dominant phenomenon since the bubbles would hit the walls and blads due to the turbulent intensity. Further, the helical ribbon impeller significantly reduces the viscosity of the fluid and improves the mixing efficiency that is confirming the authors' previous experimental results. Furthermore, formation of static vortices adversely affects the efficiency of mixing process proving that an increase in impeller speed does not necessarily enhance the mixing perfiormance. Further, the helical ribbon impeller significantly reduced the viscosity of the fluid and enhanced mixing efficiency, thereby confirming the authors' previous experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available