4.6 Article

Mitochondrial phosphate transporter and methyltransferase genes contribute to Fusarium head blight Type II disease resistance and grain development in wheat

Journal

PLOS ONE
Volume 16, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0258726

Keywords

-

Funding

  1. European Union [674964]
  2. Science Foundation Ireland [14/1A/2508]
  3. Irish Department of Agriculture [14/S/819, 11/S/103]

Ask authors/readers for more resources

The study characterized wheat genes TaMPT and TaSAM involved in the response to Fusarium head blight (FHB), showing differential expression in different wheat sub-genomes and impact on grain development and disease resistance.
Fusarium head blight (FHB) is an economically important disease of wheat that results in yield loss and grain contaminated with fungal mycotoxins that are harmful to human and animal health. Herein we characterised two wheat genes involved in the FHB response in wheat: a wheat mitochondrial phosphate transporter (TaMPT) and a methyltransferase (TaSAM). Wheat has three sub-genomes (A, B, and D) and gene expression studies demonstrated that TaMPT and TaSAM homoeologs were differentially expressed in response to FHB infection and the mycotoxigenic Fusarium virulence factor deoxynivalenol (DON) in FHB resistant wheat cv. CM82036 and susceptible cv. Remus. Virus-induced gene silencing (VIGS) of either TaMPT or TaSAM enhanced the susceptibility of cv. CM82036 to FHB disease, reducing disease spread (Type II disease resistance). VIGS of TaMPT and TaSAM significantly reduced grain number and grain weight. This indicates TaSAM and TaMPT genes also contribute to grain development in wheat and adds to the increasing body of evidence linking FHB resistance genes to grain development. Hence, Fusarium responsive genes TaSAM and TaMPT warrant further study to determine their potential to enhance both disease resistance and grain development in wheat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available