4.7 Review

Yeast cell disruption strategies for recovery of intracellular bio-active compounds - A review

Journal

INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES
Volume 36, Issue -, Pages 181-192

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ifset.2016.06.017

Keywords

Baker's yeast; Cell disruption; Mechanical; Non-mechanical; Energy consumption; Downstream processing

Funding

  1. One-Hundred Young Talents scheme of Guangdong University of Technology [220413127]

Ask authors/readers for more resources

Yeasts are cheap, attractive and easily available residual sources of valuable bio-active compounds. Extraction of these compounds requires to break the yeast cells. So efficient damage of cell wall has become an important issue to be resolved. The aim of this paper is to review the potential of some emerging cell disruption techniques for recovery of intracellular bio-active compounds from Baker's yeast including mechanical (bead mill, high pressure homogenization, ultrasonication), and non-mechanical (electrical, physical, chemical and enzymatic) techniques, as well as some newly developed methods. The advantages and drawbacks of different cell disruption methods were summarized by considering the energy consumption, the interaction of the disruption methods with downstream operations and the process economics of alternative strategies. Finally, some future directions for research areas are proposed. Industrial relevance: Wine making process entails the generation of significant amount of waste yeast, which represents an attractive source of valuable compounds that has been relatively unexploited to date. To retain the valuable cell content, effective cell disruption strategies are needed to break the rigid yeast cell walls. This review summarizes the state of the art of some emerging cell disruption techniques for recovery of intracellular bioactive compounds from yeasts including mechanical (bead mill, high pressure homogenizer, ultrasonication), and non-mechanical (electrical, physical, chemical and enzymatic) techniques. Thereby, it identifies the process economics of alternative strategies by considering the interaction of the disruption methods with downstream operations as well as the current situations and future research needs. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available