4.7 Article

A numerical model for the simulation of oil-ice interaction

Journal

PHYSICS OF FLUIDS
Volume 33, Issue 10, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0065587

Keywords

-

Ask authors/readers for more resources

A three-dimensional numerical model based on the SPH method has been developed and successfully validated for simulating interactions between oil and sea ice. The model accurately predicts the interaction between oil slicks and ice floes, and investigates the effects of various factors on oil slick accumulation.
Accurate modeling of the interaction between oil and sea ice is essential for predicting oil spill fate and transport in ice-infested waters. A three-dimensional numerical model based on the smoothed particle hydrodynamics (SPH) method is incorporated to model such interactions. The effects from air and water are well captured using suitable force components and without explicit inclusion of air and water phases. This reduces the four-phase SPH model into a two-phase model, significantly reducing computational costs and potentially enabling the use of this model for large-scale simulations. We validate the model against experimental data recently available in the literature on oil-ice interactions. The experiments studied the interaction in a flume between an ice floe and oil slick for different types of crude oils. The current velocities were varied and the thicknesses of the oil slicks were measured. The validation results show that our SPH model can adequately simulate the interaction between oil slicks and ice floes. The simulated average thicknesses fit well with the measured thicknesses despite the considerable difference in the viscosity of the tested crude oil. Moreover, the effects of oil density, surface tension, viscosity, and current velocity on oil slick accumulation in front of the ice floe are studied. The higher current velocities and higher oil density lead to thicker oil slick thickness next to the ice floe. The surface tension effect on oil slick thickness is not significant. Finally, we provide estimates for the minimum oil slick thickness for a finite range of oil viscosities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available