4.4 Article

The Effects of Noncovalent Interactions on Surface Structures Formed by Diketopyrrolopyrrole Pigment and Its Alkyl-Derivatives on HOPG Substrate

Journal

BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN
Volume 88, Issue 7, Pages 969-975

Publisher

CHEMICAL SOC JAPAN
DOI: 10.1246/bcsj.20150049

Keywords

-

Ask authors/readers for more resources

Two-dimensional self-assembled structures formed by diketopyrrolopyrrole Pigment Red 254 (3,6-bis(4-chlorophenyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione) and its alkyl-derivatives at the liquid-HOPG interface were investigated by scanning tunneling microscope (STM). Pigment Red 254 is found to form two different surface structures (crystal-like structure and solvated crystal-like structure). Furthermore, in order to investigate the effect of hydrogen bonding, alkyl-derivatized Pigment Red 254 (PR-2Cn, n: alkyl chain length) were synthesized, and their self-assembled structures were analyzed. We found that surface structures of PR-2Cn varied depending on the intermolecular and molecule-substrate van der Waals interactions arising from the n-alkyl chains introduced instead of hydrogen bonding. Shorter alkyl chains of PR-2C10 resulted in the formation of multi domains. On the other hand, PR-2C12, PR-2C14, and PR-2C16 molecules that have longer alkyl chains formed stable single domain structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available