4.6 Article

Fluorescence enhanced microfluidic sensor with CsPbI3 probe for lubricant copper ions on-site rapid detection based on SiO2 inverse opal photonic crystals

Journal

JOURNAL OF LUMINESCENCE
Volume 238, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jlumin.2021.118276

Keywords

Fluorescence-enhanced microfluidic sensor; Perovskites quantum dots probe; Copper ions on-site rapid detection; SiO2 inverse opal photonic crystals

Categories

Funding

  1. National Natural Science Foundation of China [52001047, 52071048, 51909019, 52001050]
  2. State Environ-mental Protection Key Laboratory of Coastal Ecosystem [202106]
  3. Double FirstClass Construction Project (Ph.D. Innovative Talent Training Project of Dalian Maritime University) [BSCXXM004]
  4. Fundamental Research Funds for the Central Universities [3132021209, 3132021204]
  5. Natural Science Foundation of Liaoning Province [2019MS029]
  6. High-level personnel in Dalian innovation support program [2019RQ072]
  7. National Key Research and Development and Development Program of China [2017YFC1404603]
  8. Dalian Science and Technology Innovation Fund [2018J11CY021]

Ask authors/readers for more resources

This study introduces a microfluidic sensor using SiO2 inverse opal photonic crystals to enhance CsPbI3 perovskite quantum dots photoluminescence intensity, allowing for rapid detection of Cu2+ content in lubricant. By studying the selective detection characteristic of CsPbI3 on Cu2+ and forming the SiO2 IOPCs structure in chip detection well, the detection sensitivity was effectively improved, reducing the detection limit to 0.34 nM.
Cu2+ content in diesel engine lubricating oil refers to a vital parameter suggesting the quality of oil and judging mechanical wear. Accordingly, the on-site rapid copper ions content determination in lubricant is of great sig-nificance to safe operation of diesel engines. However, most of the current researches on detection are carried out in laboratory, requiring the use of large-scale equipment such as spectrometer, which are not suitable for rapid on-site detection. Quantum dot-based optical microfluidic chip provides the possibility for heavy metal ions on-site detection, but it is subject to the defect of weak fluorescence intensity, thereby the increase in sensitivity is limited. In the present study, a microfluidic sensor using SiO2 inverse opal photonic crystals (IOPCs) to heighten CsPbI3 perovskite quantum dots (PQDs) photoluminescence (PL) intensity is proposed, which can realize rapid Cu2+ content detection in lubricant. Firstly, the selective detection characteristic of CsPbI3 on Cu2+ was studied. Experimental results showed that the photoluminescence of CsPbI3 was significantly quenched by Cu2+ because electrons were effectively transferred from CsPbI3 to Cu2+. Subsequently, to enhance the fluorescence intensity of CsPbI3 probe, the SiO2 IOPCs structure was formed in chip detection well. The effective PL intensity of CsPbI3 PQDs was enhanced by the photonic stopband effect formed by the periodically arranged micro-nano structure of photonic crystals. This enhancement effect was attributed to the coupling effect between stopband with exci-tation and emission light. As the stopband of SiO2 IOPCs was coupled with the excitation light wavelength and emission light wavelength of CsPbI3, the enhancement factors could reach 17-fold and 22-fold, respectively. The mentioned strategy could effectively improve the detection sensitivity of the microfluidic sensor and reduce the detection limit to 0.34 nM. Moreover, the formed microfluidic sensor system can be used for determination of Cu2+ content in lubricating oil on site. Meanwhile, the sturdy porous structure of SiO2 IOPCs also facilitated target metal ions to be captured and enriched.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Optics

Terahertz photoluminescence in doped nanostructures with spatial separation of donors and acceptors

R. B. Adamov, G. A. Melentev, I. V. Sedova, S. V. Sorokin, G. V. Klimko, I. S. Makhov, D. A. Firsov, V. A. Shalygin

Summary: This study investigates the THz luminescence in doped nanostructures with GaAs/AlGaAs quantum wells under interband optical pumping. The results show that the spatial separation of donors and acceptors can greatly enhance the integrated intensity of THz emission.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Luminescent ratiometric temperature sensing based on Pr3+ and Bi3+ co-doped CaNb2O6 phosphors

Yanru Li, Lei Zhong, Sha Jiang, Yutong Wang, Binyao Huang, Guotao Xiang, Li Li, Yongjie Wang, Chuan Jing, Xianju Zhou

Summary: In this study, a ratiometric luminescent thermometry based on dual-emission centers was developed using co-doped CaNb2O6 phosphors with Bi3+ and Pr3+. The obtained samples exhibited good thermosensitive and thermochromic characteristics, with a maximum absolute sensitivity of 0.09 K-1 @ 528 K and a maximum relative sensitivity of 2.17 % K-1 @ 453 K.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Benefit of Tb3+ ions to the spectral properties of Dy3+/Tb3+:CaYAlO4 crystal for use in yellow laser

Yujing Gong, Yeqing Wang, Zhiyuan Wang, Yijian Sun, Yi Yu

Summary: Single crystals of Dy3+ single-doped and Dy3+/Tb3+ co-doped CaYAlO4 were grown and analyzed. The incorporation of Tb3+ resulted in increased absorption and emission cross sections. The fluorescence lifetimes and branching ratios of the yellow emission were affected by the presence of Tb3+. The deactivation effect of Tb3+ ions and energy transfer mechanism were also discussed.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

MgF2-doped MgO-YAG:Ce composite ceramics prepared by pressureless vacuum sintering for laser-driven lighting

Lu Chen, Zhuangzhuang Ma, Jian Chen, Wang Guo

Summary: This study focuses on enhancing the thermal robustness of phosphor converter materials by preparing composite ceramics of YAG:Ce combined with high-thermal-conductivity MgO. The composite ceramics showed high density and thermal conductivity at the optimum temperature of 1400℃. Stable laser-driven white light was obtained under blue laser excitation.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Structural, luminescence, and temperature sensing properties of the Er3+-doped germanate-tellurite glass by excitation at different wavelengths

Yuwei Wu, Chunhui Niu, Lei Wang, Mingqing Yang, Shiyu Zhang

Summary: Er3+-doped germanate-tellurite glasses were prepared and their structure, luminescent, and temperature-sensing properties were studied. The glass exhibited large values of O2 and O6 and its luminescence intensity varied with temperature.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Evaluation of photoluminescence and scintillation properties of Eu-doped YVO4 single crystals synthesized by optical floating zone method

Kensei Ichiba, Takumi Kato, Kenichi Watanabe, Yuma Takebuchi, Daisuke Nakauchi, Noriaki Kawaguchi, Takayuki Yanagida

Summary: In this study, Eu-doped YVO4 single crystals with different concentrations were fabricated to evaluate their photoluminescence and scintillation properties. The results showed that the samples doped with Eu exhibited emission peaks due to 4f-4f transitions in PL and scintillation spectra. Based on the pulse height spectra, the light yield of the Eu-doped samples increased with increasing Eu concentration, while the afterglow level decreased.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Refractive index dependence of the radiative rate of a magnetic dipole transition for a nanoparticle system

Daiwen Xiao, Hei-Yui Kai, Anjun Huang, Menglin Song, Ka-Leung Wong, Peter A. Tanner

Summary: The emission spectra of Cs2NaEuCl6 nanoparticles synthesized by the hot injection method are explained. The dispersion of the nanoparticles in alkane solvents in the experiment allows the determination of the magnetic dipole radiative rate for the D-5(0) -F-7(1) channel in vacuum, which is in agreement with the calculated value.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Nd3+ doped oxide thermal probes based on luminescence intensity ratio within BW-II and excitation in BW-I

Italia V. Barbosa, Geraldine Dantelle, Alain Ibanez, Lauro J. Q. Maia

Summary: The thermal response and luminescence properties of different oxide matrices were evaluated to design more accurate thermal probes. It was found that thermal probes emitting in BW-II provide better thermal sensing with higher signal-to-noise ratio. Additionally, doping Nd3+ in Y2O3 matrix maximizes luminescence intensity, making it a promising matrix for thermal sensing.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Tunable luminescence properties of the Ca3-xLuxSc2-xMgxSi3O12:Ce3+ phosphor based LD lighting

Xin Li, Yu Zhang, Hongrui Ren, Lunlong Xie, Yinsheng Di, Mengqing Han, Zhaohui Bai, Quansheng Liu, Liangliang Zhang, Jiahua Zhang

Summary: This study successfully prepared phosphor samples based on Ca3-xLuxSc2-xMgxSi3O12:Ce3+ and investigated their luminescence properties. With the increase in Lu-Mg concentration, the peak of the sample redshifted, but the thermal stability gradually decreased. The LD devices made from CLSMS:Ce3+ fluorescent materials showed a decrease in cyan-green light and an increase in red light as the Lu-Mg concentration increased.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

On the optical properties of gallium based garnet phosphors according to Ca2Ln1-xCexZr2Ga3O12 (with Ln = Y, La, Gd, Lu)

Tim Pier, Julia Hopster, Thomas Juestel

Summary: This study investigates and reports on several samples of cerium-activated gallium-based garnet phosphors. The optimal activator concentration was found to be 1 atom-%. The size of non-emitting lanthanide ions and the molar concentration of cerium strongly influenced the crystal field splitting, which in turn shaped the excitation and emission wavelengths.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Exploring the excited state multi-proton transfer path and the associated photophysical properties of P-TNS molecule by DFT and TDDFT theory

Guijie Zhao, Wei Shi, Xin Xin, Fengcai Ma, Yongqing Li

Summary: This study reveals for the first time the proton transfer pathways and changes in the photophysical properties of P-TNS with three intramolecular hydrogen bonds. The reaction mechanism and driving force for the proton transfer process are explained through analysis of potential energy surface, frontier molecular orbitals, and hydrogen bond parameters, among others.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Achieving thermochromic upconversion of Tm3+for high-sensitive nanoprobe and information encryption

Li He, Jinshu Huang, Zhengce An, Haozhang Huang, Yu Zhao, Kexin Zhong, Bo Zhou

Summary: In this study, we designed a NaYF4:Yb3+/Tm3+@NaYF4 core-shell nanostructure to achieve thermochromic upconversion and high thermal sensitivity. We found that the blue upconversion emission of Tm3+ decreased while the deep-red emission increased with elevating temperature. The sample also showed a gradual emission color change from blue to purplish-red, and the optimal relative sensitivity reached 2.79% K-1.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Improving the UV-Vis light-harvesting of Er3+using Mn4+as a sensitizer in Li2TiO3 host

Rupesh A. Talewar

Summary: A series of Li2TiO3 phosphors doped with Mn4+ and codoped with Mn4+ and Er3+ were synthesized, which demonstrated the ability of Mn4+ ions to absorb UV-Vis photons and subsequently transfer energy to Er3+ ions, resulting in the emission of near-infrared light. These materials have the potential to enhance the absorption efficiency of Er3+-based luminescent materials.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Preparation of multicolor carbon quantum dots by hydrothermal method and their functionalization applications

Xingyuan Ma, Jianfeng Li

Summary: Carbon quantum dots (CQDs) with tunable photoluminescence properties have been synthesized using suitable carbon and dopant sources in an aqueous system. The synthesized CQDs exhibited blue, green, yellow, and red emissions, and solid-state luminescence was achieved through the preparation of solid-state fluorescent films and phosphors. This study provides important technical support for the future development of CQDs synthesis.

JOURNAL OF LUMINESCENCE (2024)

Article Optics

Desirable chirality and circularly polarized luminescence of valine methyl ester-containing indolo[3,2-b]carbazole achieved through a self-assembly strategy

De Bin Fu, Yang Bing Xu, Yu Teng Zhang, Shan Ting Liu, Xiao Fei Yang, Sheng Hua Liu

Summary: A pair of new chiral molecules, (S)-4 and (R)-4, have been designed and synthesized by introducing valine-containing groups at symmetrical positions on the periphery of an indolo[3,2-b]carbazole unit. These molecules exhibit aggregation-induced circular dichroism (AICD) properties in DMF/water mixtures, and in a mixture with 99% water fraction, they show strong, mirror-image, blue circularly polarized luminescence (CPL) signals.

JOURNAL OF LUMINESCENCE (2024)