4.4 Article

Lithium-ion battery modelling for the energy management problem of microgrids

Journal

IET GENERATION TRANSMISSION & DISTRIBUTION
Volume 10, Issue 3, Pages 576-584

Publisher

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-gtd.2015.0423

Keywords

distributed power generation; lithium compounds; secondary cells; energy management systems; wind power plants; photovoltaic power systems; integer programming; microgrids; lithium-ion battery; energy management problem; uncontrollable charging ramps; quadratic degradation cost; piecewise degradation cost; life expectancy; wind generation resources; photovoltaic generation resources; backup generator; deterministic mixed-integer linear problem; quadratic problem; Li

Funding

  1. International Research Staff Exchange Scheme (IRSES) (Marie Curie) in the EU project Electricity Consumption Analysis to Promote Energy Efficiency Considering Demand Response and Non-technical Losses (ELECON)
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Ask authors/readers for more resources

This study presents a mathematical model of lithium-ion (Li-ion) batteries in the energy management (EM) problem of a microgrid (MG). In this study, the authors develop a detailed model of Li-ion batteries that considers the degradation cost associated with operation, controllable and uncontrollable charging ramps, other limits, and the operating characteristics provided by the manufactures. The Li-ion battery degradation cost is analysed using different approaches and is compared with modelling without this cost, using a quadratic degradation cost, and using a piecewise degradation cost. Furthermore, this cost is analysed using a linear cost that takes the life expectancy based on the number of cycles of the battery into account. To analyse the proposed method and other modelling approaches, the authors examine the battery model in an EM problem in an MG. This MG, which can be connected to the main grid, also uses wind and photovoltaic as generation resources, in addition to a backup generator. The EM problem is modelled as a deterministic mixed-integer linear (or quadratic) problem; the results of eleven different cases are used in the analysis of the proposed Li-ion battery model for a 24 h planning horizon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available