4.7 Article

Cyclone Center: Can Citizen Scientists Improve Tropical Cyclone Intensity Records?

Journal

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/BAMS-D-13-00152.1

Keywords

-

Funding

  1. Citizen Science Alliance development grant from the Alfred P. Sloan Foundation
  2. Risk Prediction Initiative (RPI)
  3. NOAA/Climate Data Record (CDR) Program through CICS-NC

Ask authors/readers for more resources

The global tropical cyclone (TC) intensity record, even in modern times, is uncertain because the vast majority of storms are only observed remotely. Forecasters determine the maximum wind speed using a patchwork of sporadic observations and remotely sensed data. A popular tool that aids forecasters is the Dvorak technique-a procedural system that estimates the maximum wind based on cloud features in IR and/or visible satellite imagery. Inherently, the application of the Dvorak procedure is open to subjectivity. Heterogeneities are also introduced into the historical record with the evolution of operational procedures, personnel, and observing platforms. These uncertainties impede our ability to identify the relationship between tropical cyclone intensities and, for example, recent climate change. A global reanalysis of TC intensity using experts is difficult because of the large number of storms. We will show that it is possible to effectively reanalyze the global record using crowdsourcing. Through modifying the Dvorak technique into a series of simple questions that amateurs (citizen scientists) can answer on a website, we are working toward developing a new TC dataset that resolves intensity discrepancies in several recent TCs. Preliminary results suggest that the performance of human classifiers in some cases exceeds that of an automated Dvorak technique applied to the same data for times when the storm is transitioning into a hurricane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available