4.6 Article

Nanofluidic thermal-fluid transport in a split-driven porous system working under a magnetic environment

Journal

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/HFF-08-2021-0555

Keywords

Porous media; Heat transfer; Heatlines; Nanoliquid; Oblique cavity; Partial driven porous cavity (PDPC)

Ask authors/readers for more resources

This study focuses on the thermo-fluid flow in a partially driven cavity using Cu-water nanoliquid, magnetic field and porous substance. It investigates the thermal characteristics and magnetohydrodynamic convection in a nanoliquid filled porous system. The study reveals that heat transfer is enhanced at higher Richardson numbers with increasing Reynolds value and wall motions significantly influence flow vortices and heat transfer formation.
Purpose This study aims to focus on a thermo-fluid flow in a partially driven cavity (PDC) using Cu-water nanoliquid, magnetic field and porous substance. The cooling and sliding motion are applied on the upper half of the vertical walls and the bottom wall is heated. Thermal characteristics are explored to understand magnetohydrodynamic convection in a nanoliquid filled porous system from a fundamental viewpoint. The governing parameters involved to cater to the moving speed of the sidewalls and partial translation direction are the relative strength of thermal buoyancy, porous substance permeability, magnetic field intensity, nanoparticle suspension and orientation of the cavity. Design/methodology/approach The coupled transport equations of the problem are solved using an in-house developed finite volume-based computing code. The staggered nonuniform grids along the x and y directions are used. The SIMPLE algorithm technique is considered for the iterative solution of the discretized equations with the convergence check of the continuity mass defect below 10(-10). Findings The present study unveils that the heat transfer enhances at higher Ri with the increasing value of Re, irrespective of the presence of a porous substance or magnetic field or the concentration of nanofluid. Apart from different flow controlling parameters, the wall motions have a significant contribution to the formation of flow vortices and corresponding heat transfer. Orientation of the cavity significantly alters the transport process within the cavity. The upward wall velocity for both the sidewalls could be a better choice to enhance the high heat transfer (approximately 88.39% at Richardson and Reynolds numbers, respectively, 0.1 and 200). Research limitations/implications Considering other multi-physical scenarios like porous layers, conducting block, microorganisms and the present investigation could be further extended to analyze a problem of complex flow physics. Practical implications In this study, the concept of partially driven wall motion has been adopted under the Cu-water nanoliquid, magnetic field, porous substance and oblique enclosure. All the involved flow-controlling parameters have been experimented with under a wide parametric range and associated thermo-flow physics are analyzed in detail. This outcome of this study can be very significant for designing as well as controlling thermal devices. Originality/value The convective process in a partially driven cavity (PDC) with the porous medium has not been investigated in detail considering the multi-physical scenarios. Thus, the present effort is motivated to explore the thermal convection in such an oblique enclosure. The enclosure is heated at its bottom and has partially moving-wall cold walls. It consists of various multi-physical conditions like porous structure, magnetic field, Cu-H2O nanoliquid, etc. The system performance is addressed under different significant variables such as Richardson number, Reynolds number, Darcy number, Hartmann number, nanoliquid concentration and orientation of cavity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available