4.7 Article

Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2015.2441061

Keywords

Lower limb amputee; lower limb prosthesis; myoelectric control; powered prosthesis; residual limb; residual limb electromyography; transtibial amputee; transtibial prosthesis

Funding

  1. Department of Defense [W81XWH-09-2-0142]

Ask authors/readers for more resources

Lower limb amputees can use electrical activity from their residual muscles for myoelectric control of a powered prosthesis. The most common approach for myoelectric control is a finite state controller that identifies behavioral states and discrete changes in motor tasks. An alternative approach to state-based myoelectric control is continuous proportional myoelectric control where ongoing electrical activity has a proportional relationship to the prosthetic joint torque or power. To test the potential of continuous proportional myoelectric control for powered lower limb prostheses, we recruited five unilateral transtibial amputees to walk on a treadmill with an experimental powered prosthesis. Subjects walked using the powered prosthesis with and without visual feedback of their control signal in real time. Amputee subjects were able to adapt their residual muscle activation patterns to alter prosthetic ankle mechanics when we provided visual feedback of their myoelectric control signal in real time. During walking with visual feedback, subjects significantly increased their peak prosthetic ankle power (p = 0.02 ANOVA) and positive work (p = 0.02, ANOVA) during gait above their prescribed prosthesis values. However, without visual feedback, the subjects did not increase their peak ankle power during push off. These results show that amputee users were able to volitionally alter their prosthesis mechanics during walking, but only when given an explicit goal for their residual muscle motor commands. Future studies that examine the motor and learning capabilities of lower limb amputees using their residual muscles for continuous proportional myoelectric control are needed to determine the viability of integrating continuous high-level control with existing finite state prosthetic controllers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available