4.7 Article

Ground-Moving-Platform-Based Human Tracking Using Visual SLAM and Constrained Multiple Kernels

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2016.2557763

Keywords

Mobile vision; human detection; human tracking; visual SLAM

Ask authors/readers for more resources

This paper proposes a robust ground-moving-platform-based human tracking system, which effectively integrates visual simultaneous localization and mapping (V-SLAM), human detection, ground plane estimation, and kernel-based tracking techniques. The proposed system systematically detects humans from recorded video frames of a moving camera and tracks the humans in the V-SLAM-inferred 3-D space via a tracking-by-detection scheme. To efficiently associate the detected human frame by frame, we propose a novel human tracking framework, combining the constrained-multiple-kernel tracking and the estimated 3-D information (depth), to globally optimize the data association between consecutive frames. By taking advantage of the appearance model and 3-D information, the proposed system not only achieves high effectiveness but also well handles occlusion in the tracking. Experimental results show the favorable performance of the proposed system, which efficiently tracks humans in a camera equipped on a ground-moving platform such as a dash camera and an unmanned ground vehicle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available