4.6 Article

A new differential algorithm based on S-transform for the micro-grid protection

Journal

ELECTRIC POWER SYSTEMS RESEARCH
Volume 202, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2021.107590

Keywords

Differential protection; S-transform; Maximum amplitude curve; Micro-grid

Ask authors/readers for more resources

This paper presents a differential algorithm for micro-grid protection that can be applied in various modes and structures. It also provides a method for fault type identification and phase selection. The algorithm is tested using simulations of different fault types on an IEC standard network in MATLAB simulink software.
Micro-grids and their protection are of the important issues recently. In this paper, a differential algorithm is presented for the micro-grid protection. This algorithm is capable of protecting micro-grids in grid-connected or islanded modes and radial or circular structures. In the proposed algorithm, first, the differential currents measured from the two ends of the line are calculated. Then, by means of the S-transform, the energy of the signal versus time is extracted and the fault condition is identified. This way, the proposed algorithm does not depend on the current direction in the islanded mode. A method is also provided here for the fault type identification and faulted phases selection. The proposed algorithm is applied on the IEC standard network. By means of the network simulated in MATLAB simulink software, different fault types are simulated and used to test the proposed algorithm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Electrical & Electronic

Ultra-high-speed protection of transmission lines using traveling wave theory

Saeid Hasheminejad, Seyed Ghodratollah Seifossadat, Morteza Razaz, Mahmood Joorabian

ELECTRIC POWER SYSTEMS RESEARCH (2016)

Article Engineering, Electrical & Electronic

Traveling-wave-based protection of parallel transmission lines using Teager energy operator and fuzzy systems

Saeid Hasheminejad, Seyed Ghodratollah Seifossadat, Morteza Razaz, Mahmood Joorabian

IET GENERATION TRANSMISSION & DISTRIBUTION (2016)

Article Engineering, Electrical & Electronic

New travelling-wave-based protection algorithm for parallel transmission lines during inter-circuit faults

Saeid Hasheminejad, Seyed Ghodratollah Seifossadat, Mahmood Joorabian

IET GENERATION TRANSMISSION & DISTRIBUTION (2017)

Article Engineering, Electrical & Electronic

Power Quality Disturbance Classification Using S-transform and Hidden Markov Model

S. Hasheminejad, S. Esmaeili, S. Jazebi

ELECTRIC POWER COMPONENTS AND SYSTEMS (2012)

Article Engineering, Electrical & Electronic

Transient actions analysis of power transformers based on S-transform and hidden Markov model

S. Hasheminejad, S. Esmaeili

INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS (2014)

Article Engineering, Electrical & Electronic

Proposing a new ultra-high speed algorithm for the fault type classification in power transmission lines

Mohsen Tavakoli Allahabadi, Saeid Hasheminejad

Summary: A new ultra-high-speed algorithm for fault type classification and identification based on traveling waves is proposed in this paper, utilizing the Karen-Bauer matrix for phase-to-modal transformation and wavelet transform to extract traveling waves. The algorithm is designed by comparing the first traveling wave amplitude of different modal components, making it easy to understand and implement for relay programming.

ELECTRIC POWER SYSTEMS RESEARCH (2021)

Article Engineering, Electrical & Electronic

A Proposed Method for Classification of Wide Variety Range of Power Quality Disturbances Using S-Transform

S. Hasheminejad, S. Esmaeili

INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE (2011)

Article Engineering, Electrical & Electronic

Detecting loss of excitation condition of synchronous generator in the presence of unified power flow controller based on data mining method

Ehsan Rahmkhoda, Jawad Faiz, Moein Abedini

Summary: This paper investigates the failures and errors of loss-of-excitation (LOE) protection and proposes an intelligent method combined with a learning vector quantization (LVQ) neural network. The simulation results demonstrate that the proposed algorithm can detect LOE conditions quickly and prevent stresses applied to the machine and power system.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Specialized scatter search algorithm for optimal transmission switching with voltage control

Andre M. Garcia, Leonardo H. Macedo, Ruben Romero

Summary: This article presents a specialized scatter search algorithm to solve the optimal transmission switching problem considering voltage control, and its efficiency is validated through tests.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

A smart predict-and-optimize framework for microgrid's bidding strategy in a day-ahead electricity market

Adel F. Alrasheedi, Khalid A. Alnowibet, Ahmad M. Alshamrani

Summary: This paper studies the bidding strategy problem of microgrid in a day-ahead electricity market. The DA electricity prices, demand, and uncertainties are modeled using different scenarios and robust optimization. A smart predict-and-optimize methodology is proposed, where a cost-oriented prediction model is used to replace accuracy-oriented methods. The trilevel mathematical programming approach is utilized to construct a cost-oriented model and solve the problem.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Operational status monitoring of smart grid and power communication network coupling and collaboration based on multi-head attention mechanism

Depin Lv, Qiusheng Yu, Xiaoyong Wang, Yulian Bo, Yongjing Wei, Lei Liu, Pu Zhang, Yan Zhang, Wensheng Zhang

Summary: This study proposes a method based on the MHA-CNN framework to monitor the operation status of the smart grid and power communication network coupling. The method utilizes HHT to extract features from operational data and employs MHA to extract key feature information from fault data, achieving faster fault detection speed and higher detection probability.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Dominant mode identification for grey-box grid-tied converters

Tao Zhang, Zhiguo Hao, Hongyue Ma, Songhao Yang, Chongtao Li

Summary: This paper introduces a dominant mode identification (DMI) method to assess the stability of grey-box grid-tied converters. The method analyzes the critical eigenvalues and can be applied to different grid connection scenarios.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Risk-constrained probabilistic coordination in coupled transmission and distribution system

Aamir Nawaz, Hongtao Wang, Huiting Yang, Hammad Armghan, Jiechao Gao

Summary: This paper presents a risk constrained probabilistic problem framework for addressing the challenges of stochastic dispatching due to contingencies and the integration of renewable sources. By utilizing probabilistic analytical target cascading, polynomial chaos expansion, and benders decomposition algorithm, the proposed method reduces computational burden and improves efficiency.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Enhanced robust frequency stabilization of a microgrid against simultaneous cyber-attacks

Thongchart Kerdphol, Issarachai Ngamroo, Tossaporn Surinkaew

Summary: This paper introduces an enhanced robust H-infinity technique to improve the regulation performance and cyber resiliency of secondary frequency control in a microgrid. The study shows that cyber-attacks affect different elements of secondary frequency control in the microgrid depending on the type of attack used.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Diagnostics analysis of partial discharge events of the power cables at various voltage levels using ramping behavior analysis method

Sambeet Mishra, Praveen Prakash Singh, Ivar Kiitam, Muhammad Shafiq, Ivo Palu, Chiara Bordin

Summary: This study aims to analyze partial discharge events in high-voltage cables and extract patterns and trends. The results indicate a positive correlation between the number of PD events and the increase in voltage levels, with negative PD peaks being more frequent at lower stress levels.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Protection system planning in distribution networks with microgrids using a bi-level multi-objective and multi-criteria optimization technique

Cleberton Reiz, Jonatas B. Leite, Clara S. Gouveia, Mohammad Sadegh Javadi

Summary: This research proposes a bilevel method to simultaneously solve the allocation and coordination problems in microgrid protection, considering local devices. The results show that solving these problems simultaneously can save costs and select the optimal solution.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

A two-stage stochastic programming approach for planning of SVCs in PV microgrids under load and PV uncertainty considering PV inverters reactive power using Honey Badger algorithm

Rasha Elazab, M. Ser-Alkhatm, Maged A. Abu Adma, K. M. Abdel-Latif

Summary: This paper proposes a two-layer methodology for the allocation and sizing of SVCs in radial distribution systems. The Power Loss Index (PLI) is used to choose the best candidate buses for allocating SVCs, and a two-stage stochastic programming algorithm is proposed to solve the sizing problem. The advantages of combining SVCs and the PV inverter's reactive power provision ability are also analyzed.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

High pass filter based traveling wave method for fault location in VSC-Interfaced HVDC system

Samreen Javaid, Dongyu Li, Abhisek Ukil

Summary: This paper introduces a new algorithm based on high pass filter for traveling wave fault location, which can differentiate the peak value of the traveling wave more easily by removing oscillation in the signal. The algorithm is tested on a DC simulation model and executed in MATLAB environment, achieving high accuracy in fault location results. Compared with traditional methods, this algorithm shows higher accuracy and faster response.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Steady-state electrical properties and loss reduction measures analysis for 220 kV tunnel cable system

Enzhe Wang, Xiangrong Chen, Hanshan Zhu, Kai Yin, Muhammad Awais, Ashish Paramane

Summary: This paper aims to reduce the power loss of tunnel cable systems by using different grounding and loss reduction methods. The case study of the submarine tunnel power cable project in Ningbo-Zhoushan, China is considered. The nodal admittance matrices of the cable are established using the telegraph equation, and the cascading algorithm is used to analyze the induced voltage and circulating current in the cable sheath, taking into account the presence of grounding node. The study finds that coordinating the amplitude and phase angle of series impedance can reduce the power loss of the cable system.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Numerical model of lightning attachment on UHV-AC transmission lines and effects of operating voltage, phase angle, and terrain

Ziwei Ma, Jasronita Jasni, Mohd Zainal Abidin Ab Kadir, Norhafiz Azis

Summary: A numerical model was developed to analyze lightning attachment on UHV-AC double-circuit transmission lines. Simulation results showed that upward leaders simultaneously occurred on the ground wire and the upper-phase conductor when the phase conductors were energized. A new expression for calculating the striking distance on the ground wire was proposed based on the simulation results. Additionally, high voltage, phase angle, and terrain slope were found to increase the surface electric field of the upper-phase conductor.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

An efficient protection scheme for microgrid using ROC of differential admittance angle

Kunal Kumar, Susmita Kar

Summary: This paper presents an efficient protection scheme utilizing the rate of change parameter to detect both shunt faults and high impedance faults. By comparing with the existing scheme and testing on the IEEE 13 Bus test system, the effectiveness of the proposed scheme is demonstrated.

ELECTRIC POWER SYSTEMS RESEARCH (2024)

Article Engineering, Electrical & Electronic

Analysis, design and control of a hybrid railway power conditioner considering power rating reduction

Cheng Che, Bangbang He, Zhixuan Gao, Qiwei Lu, Yang Chen, Zhifeng Wang, Jinghan Guo, Yanwen Wang

Summary: A low-cost hybrid railway power conditioner (HRPC) technology scheme is proposed in this paper to effectively compensate negative sequence current (NSC) of the V/v traction system and reduce the capacity and cost of the railway power conditioner (RPC). The proposed HRPC combines an RPC with a modular multilevel converter structure (MMC-RPC) and a railway static var compensator (RSVC) and considers regenerative braking energy in the compensation process.

ELECTRIC POWER SYSTEMS RESEARCH (2024)