4.7 Article

Photo-catalytic and biotic degradation of polystyrene packaging film: Effect of zinc oxide photocatalyst nanoparticles and nanoclay

Journal

CHEMOSPHERE
Volume 283, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130972

Keywords

Polystyrene; ZnO nanoparticles; Nanoclay; Photo-catalytic degradation; Biodegradation

Ask authors/readers for more resources

The synergistic effect of zinc oxide nanoparticles and organonanoclay as photocatalyst and biodegradable promoter on the degradation of polystyrene films was investigated. The PS-ONC-ZnO nanocomposite showed higher photo- and biodegradation efficiency compared to neat PS, demonstrating potential for environmental applications.
Synergistic effect of zinc oxide nanoparticles (ZnO-NPs) as photocatalyst and organonanoclay (ONC) as biodegradable promoter on the degradation of polystyrene (PS) film was investigated. The films were exposed to ultraviolet irradiation under ambient air at room temperature for photo-catalytic degradation and then submitted to biodegradation test in soil using respirometric procedure. Fourier-transform infrared and ultraviolet-visible spectroscopy, thermogravimetric analysis, colorimeter technique, contact angle measurement, and the carbon dioxide evolution results showed higher photo- and biodegradation efficiency of PS-ONC-ZnO nanocomposite compared to the neat PS, P5-ONC and PS-ZnO nanocomposites. Thermal stability, optical band gap, and water contact angle of photo-degraded PS-ONC-ZnO nanocomposite decreased by 11.37, 18.33 and 63.99%, respectively, while that of PS film was only 6.20, 6.44 and 5.84%, respectively. The photo-degraded PSONC-ZnO and PS-ZnO film indicated a biodegradation percentage value of 3.3 and 2.1%, respectively, over 16 weeks of incubation in soil. The possible degradation mechanism of nanocomposites was briefly discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available