4.7 Article

CQDs/biochar from reed straw modified Z-scheme MgIn2S4/BiOCl with enhanced visible-light photocatalytic performance for carbamazepine degradation in water

Journal

CHEMOSPHERE
Volume 287, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.132192

Keywords

MgIn2S4/BiOCl; Carbamazepine; Photocatalyst; Green carbon quantum dots; Biochar

Funding

  1. National Natural Science Foundation of China [42077330]

Ask authors/readers for more resources

The modification of MgIn2S4/BiOCl (MB) heterojunction photocatalyst using biochar (BC) or carbon quantum dots (CQDs) improved the photocatalytic degradation performance for carbamazepine (CBZ) and CQDs acted as a bridge for storing and transferring electrons in the entire Z-scheme system. The results showed that the photocatalytic efficiency under visible light irradiation was significantly enhanced by the presence of BC and CQDs, leading to higher removal rates of CBZ and improved environmental safety.
The application of environmental-friendly and sustainable green materials in constructing photocatalysts to degrade pharmaceuticals and personal care products (PPCPs) attracts more attention. Herein, biochar (BC) or biomass carbon quantum dots (CQDs) were used to modify MgIn2S4/BiOCl (MB) heterojunction photocatalyst with Z-scheme structure, and improved the photocatalytic degradation performance for carbamazepine (CBZ) in the aqueous solution. Both BC and CQDs could form electron transfer interface with MB heterojunction, resulting in the photodegradation rate of MgIn2S4/BiOCl/CQDs (MBC, 96.43%) and MgIn2S4/BiOCl/BC (MBB, 88.09%) to CBZ within 120 min visible-light irradiation, which were significantly higher than that of MB (65.84%). Moreover, photoelectrochemical and photoluminescence tests verified that CQDs could act as a bridge for storing and transferring electrons in the entire Z-scheme system. Thence, compared with MBB, MBC could produce more center dot OH and center dot O-2(-) under the visible light, which was indicated by the results of radical quenching experiments and electron paramagnetic resonance. Interestingly, under the natural sunlight, the photocatalytic performance of MBC to CBZ was even better than under laboratory conditions. In addition, the TOC removal efficiencies of MBB and MBC could reach 85.09% and 93.79% respectively, and ECOSAR program was utilized to further evaluate the eco-toxicity of CBZ and the intermediates towards fish, daphnid, and green algae, indicating that the photocatalytic process involving MBB and MBC showed outstanding toxicity reduction performance. Finally, compared with other composites, MBB and MBC showed higher photocatalytic performance and lower energy consumption, which would provide a green strategy for biochar materials in the photocatalytic treatment of PPCPs in water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available