4.3 Article

Na+/Ca2+ exchanger isoform 1 (NCX1) and canonical transient receptor potential channel 6 (TRPC6) are recruited by STIM1 to mediate Store-Operated Calcium Entry in primary cortical neurons

Journal

CELL CALCIUM
Volume 101, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2021.102525

Keywords

SOCE; STIM1; Na plus; Ca (2+) exchanger; TRPC6; ER Ca (2+) refilling; cortical neurons

Categories

Funding

  1. PRIN 2015 from MIUR [2015KRYSJN]
  2. Progetto Speciale di Ateneo [CA.04_CDA_n_103 27.03.2019]
  3. Progetto di Ateneo Linea A [CdA_54_2020_FRA]

Ask authors/readers for more resources

Excessive Ca2+ release is a significant feature of several neurodegenerative diseases. SOCE plays a role in regulating cell functions by supplying Ca2+ signals. NCX1 and STIM1 are key components of SOCE in neurons. This study suggests that NCX1 may participate in SOCE through its interaction with STIM1.
Excessive calcium (Ca2+) release from the endoplasmic reticulum (ER) represents an important hallmark of several neurodegenerative diseases. ER is recharged from Ca2+ through the so-called Store-Operated Calcium Entry (SOCE) thus providing Ca2+ signals to regulate critical cell functions. Single transmembrane-spanning domain protein stromal interacting molecule 1 (STIM1), mainly residing in the ER, and plasmalemmal channel Orai1 represent the SOCE key components at neuronal level. However, many other proteins participate to ER Ca2+ refilling including the Na+/Ca2+ exchanger isoform 1 (NCX1), whose regulation by ER remains unknown. In this study, we tested the possibility that neuronal NCX1 may take part to SOCE through the interaction with STIM1. In rat primary cortical neurons and in nerve growth factor (NGF)-differentiated PC12 cells NCX1 knocking down by siRNA strategy significantly prevented SOCE as well as SOCE pharmacological inhibition by SKF-96365 and 2-APB. A significant reduction of SOCE was recorded also in synaptosomes from ncx1+/+ mice brain compared with ncx1+/+ mice. Double labeling confocal experiments showed a large co-localization between NCX1 and STIM1 in rat primary cortical neurons. Accordingly, NCX1 and STIM1 co-immunoprecipitated and functionally interacted each other during ischemic preconditioning, a phenomenon inducing ischemic tolerance. However, STIM1 knocking down reduced NCX1 activity recorded by either patch-clamp electrophysiology or Fura-2 single-cell microfluorimetry. Furthermore, canonical transient receptor potential channel 6 (TRPC6) was identified as the mechanism mediating local increase of sodium (Na+) useful to drive NCX1 reverse mode and, therefore, NCX1-mediated Ca2+ refilling. In fact, TRPC6 not only interacted with STIM1, as shown by the co-localization and co-immunoprecipitation with the ER Ca2+ sensor, but it also mediated 1,3-Benzenedicarboxylic acid, 4,4 '-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester (SBFI)-monitored Na+ increase elicited by thapsigargin in primary cortical neurons. Accordingly, efficient TRPC6 knockdown prevented thapsigargin-induced intracellular Na+ elevation and SOCE. Collectively, we identify NCX1 as a new partner of STIM1 in mediating SOCE, whose activation in the reverse mode may be facilitated by the local increase of Na+ concentration due to the interaction between STIM1 and TRPC6 in primary cortical neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available