4.8 Article

Regulating bacterial dynamics by lime addition to enhance kitchen waste composting

Journal

BIORESOURCE TECHNOLOGY
Volume 341, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2021.125749

Keywords

Kitchen waste composting; Lime Modular network analysis; Bacterial community; Lime

Funding

  1. National Key R&D Program of China [2018YFC1901000]

Ask authors/readers for more resources

This study found that lime addition during kitchen waste composting can promote bacterial growth and activity, improving composting effectiveness. The addition of lime at different stages has a significant impact on the composition and function of bacterial communities, thereby affecting gas emissions and nutrient transformations during composting.
This study examined bacterial dynamics in response to lime addition to enhance kitchen waste composting using modular network analysis. Bacterial communities could be separated into three meta-modules corresponding to the mesophilic, thermophilic, and mature stage of composting. Lime addition at 1% (wet weight) suppressed acidogens and denitrifiers (e.g. Lactobacillus and Acinetobacter) at the mesophilic stage to reduce greenhouse gas emissions. The matrix pH and temperature were also increased by lime addition via hydrogen reaction to favor bacterial growth and activity. Thus, thermophilic bacteria (e.g. Thermoactinomycetaceae and Planifilum) were enriched with lime addition to facilitate lignocellulose biodegradation for humus formation at the thermophilic stage. Further lime addition to 1.5% reduced ammonia emission at the thermophilic stage via chemical fixation. Moreover, lime inhibited denitrifiers but proliferated nitrifiers at the mature stage to decrease nitrous oxide emission and enhance nitrate content, respectively. As such, lime addition improved both biotic and abiotic composting performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available