4.8 Review

Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review

Journal

BIORESOURCE TECHNOLOGY
Volume 343, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2021.126158

Keywords

Biorefinery; Lignocellulosics; Optimization; Organosolv; Simulation

Ask authors/readers for more resources

Organosolv pretreatment plays a crucial role in the fractionation of lignocellulosic biomass within the biorefinery concept, facilitating the separation of major components for renewable energy production. Simulation and optimization ensure the efficient operation of biorefinery units from a technological, economic, and environmental perspective, promoting sustainable development in the context of circular economy.
Organosolv pretreatment can be considered as the core of the lignocellulosic biomass fractionation within the biorefinery concept. Organosolv facilitates the separation of the major fractions (cellulose, hemicelluloses, lignin), and their use as renewable feedstocks to produce bioenergy, biofuels, and added-value biomass derived chemicals. The efficient separation of these fractions affects the economic feasibility of the biorefinery complex. This review focuses on the simulation of the organosolv pretreatment and the optimization of (i) feedstock delignification, (ii) sugars production (mainly from hemicelluloses), (iii) enzymatic digestibility of the cellulose fraction and (iv) quality of lignin. Simulation is used for the technoeconomic optimization of the biorefinery complex. Simulation and optimization implement a holistic approach considering the efficient technological, economic, and environmental performance of the biorefinery operational units. Consequently, an optimized organosolv stage is the first step for a sustainable, economically viable biorefinery complex in the concept of industrial ecology and zero waste circular economy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available