4.8 Article

Machine learning based analysis of reaction phenomena in catalytic lignin depolymerization

Journal

BIORESOURCE TECHNOLOGY
Volume 345, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2021.126503

Keywords

Lignin depolymerization; Catalyst; Bio-oil yield; Machine learning

Ask authors/readers for more resources

A predictive model was developed using the Random Forest regression method to study the impact of catalyst surface properties and lignin molecular weight on bio-oil yield, char yield, and reaction time in lignin solvolysis. The models showed high coefficients of determination and explained the feature importance for each case, with average pore diameter contributing 3% to reaction time.
Heterogeneously catalyzed lignin solvolysis opens the possibility of transforming low value biomass into high value, useful aromatic chemicals, however, its reaction behavior is poorly understood due to the many possible interactions between reaction parameters. In this study, a novel predictive model for bio-oil yield, char yield and reaction time is developed using Random Forest (RF) regression method using data available from the literature to study the impact of surface properties of the catalyst and the weight averaged molecular weight of the lignin (M-w) used in the reaction. The models achieved a coefficient of determination (R2) score of 0.9062, 0.9428 and 0.8327, respectively, and feature importance for each case was explained and tied to studies that provide a mechanistic explanation for the performance of the model. Surface properties and lignin Mw showed no importance to the prediction of bio-oil yield and average pore diameter contributed 3% of feature importance to reaction time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Energy & Fuels

Removing the Bottleneck on Wind Power Potential to Create Liquid Fuels from Locally Available Biomass

Abraham Castro Garcia, Shuo Cheng, Jeffrey S. Cross

Summary: Japan's northernmost prefecture, Hokkaido, has untapped wind power potential that could be harnessed for green hydrogen production. The study examines the integration of converting Kraft lignin into bio-oil with green hydrogen production, calculating the economic feasibility and wind power capacity required. Discussions also include the integration of green hydrogen with other processes in Japan and other regions, outlining potential benefits and challenges from an energy policy perspective.

ENERGIES (2021)

Article Energy & Fuels

Effect of electron injection on oxidative pyrolysis of cellulose and polypropylene

Takahiro Kobori, Kunio Yoshikawa, Tamer M. Ismail, T. M. Yasser, Abraham Castro Garcia, Kiryu Kanazawa, Fumitake Takahashi

Summary: This study investigated the effects of electron injection on pyrolysis of PP and cellulose. The results showed that electron injection promoted the pyrolysis of both PP and cellulose, leading to reduced tar generation. This effect may be attributed to the production of highly reactive oxygen species, activation of hydration reactions, and formation of hydrocarbon radicals.

APPLIED ENERGY (2022)

Review Energy & Fuels

Lignin Gasification: Current and Future Viability

Abraham Castro Garcia, Shuo Cheng, Jeffrey S. Cross

Summary: The consumption of fossil fuels is a significant driver of climate change. Lignin derived from biomass is being increasingly studied as a carbon-neutral raw material for fuel production. Gasification of biomass, specifically lignin, shows promise in producing syngas and heat for various applications. This review examines the existing research on lignin gasification and compares it to other thermochemical processes. The analysis suggests that while lignin gasification may gain importance in the near future for hydrogen production, its potential lies in utilizing its chemical compounds for emerging applications.

ENERGIES (2022)

Article Chemistry, Multidisciplinary

Prediction of Higher Heating Values in Bio-Oil from Solvothermal Biomass Conversion and Bio-Oil Upgrading Given Discontinuous Experimental Conditions

Abraham Castro Garcia, Phoebe Lim Ching, Richard H. Y. So, Shuo Cheng, Sasipa Boonyubol, Jeffrey S. Cross

Summary: Machine learning modeling is used to predict the final higher heating value (HHV) and Delta HHV for the conversion of lignocellulosic feedstocks to bio-oil (BO) and BO upgrading. The results show that process temperature and reaction time have significant impacts on the predictions, while the elemental composition of the feedstock or BO also plays a role. However, the solvent used, initial moisture concentration in BO, and catalyst active phase have low predicting power within the context of the data set used. The findings of this study can guide the development of minimum reporting guidelines for future studies and facilitate the application of machine learning.

ACS OMEGA (2023)

Review Green & Sustainable Science & Technology

Solvolysis of Kraft Lignin to Bio-Oil: A Critical Review

Abraham Castro Garcia, Shuo Cheng, Jeffrey S. Cross

CLEAN TECHNOLOGIES (2020)

Article Agricultural Engineering

Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation

Yinping Xiang, Meiying Jia, Rui Xu, Jialu Xu, Lele He, Haihao Peng, Weimin Sun, Dongbo Wang, Weiping Xiong, Zhaohui Yang

Summary: This study investigated the impact of the non-antibiotic pharmaceutical carbamazepine on antibiotic resistance genes (ARGs) during anaerobic digestion. The results showed that carbamazepine induced the enrichment of ARGs and increased the abundance of bacteria carrying these genes. It also facilitated microbial aggregation and intercellular communication, leading to an increased frequency of ARGs transmission. Moreover, carbamazepine promoted the acquisition of ARGs by pathogens and elevated their overall abundance.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings

Weixin Zhao, Tianyi Hu, Hao Ma, Dan Li, Qingliang Zhao, Junqiu Jiang, Liangliang Wei

Summary: This review summarizes the effects and potential mechanisms of biochar on microbial behavior in AD systems. The addition of biochar has been found to promote microbial colonization, alleviate stress, provide nutrients, and enhance enzyme activity. Future research directions include targeted design of biochar, in-depth study of microbial mechanisms, and improved models.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives

Christina Karmann, Anna Magrova, Pavel Jenicek, Jan Bartacek, Vojtech Kouba

Summary: This review assesses nitrogen removal technologies in reject water treatment, highlighting the differences in environmental impacts and economic benefits. Partial nitritation-anammox shows potential for economic benefits and positive environmental outcomes when operated and controlled properly.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Layered double hydroxide loaded pinecone biochar as adsorbent for heavy metals and phosphate ion removal from water

Wei-Hao Huang, Ying-Ju Chang, Duu-Jong Lee

Summary: This study modified pinecone biochar with layered double hydroxide (LDH) to enhance its adsorption capacity for heavy metal and phosphate ions. The LDH-biochar showed significantly improved adsorption capacities for Pb2+ and phosphate, and a slight increase for Cu2+ and Co2+. The LDH layer enhanced the adsorption through various mechanisms.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Machine learning-based prediction of methane production from lignocellulosic wastes

Chao Song, Fanfan Cai, Shuang Yang, Ligong Wang, Guangqing Liu, Chang Chen

Summary: This paper developed a machine learning model to predict the biochemical methane potential during anaerobic digestion. Model analysis identified lignin content, organic loading, and nitrogen content as key attributes for methane production prediction. For feedstocks with high cellulose content, early methane production is lower but can be improved by prolonging digestion time. Moreover, lignin content exceeding a certain value significantly inhibits methane production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource

Sang Min Lee, Ju Young Lee, Ji-Sook Hahn, Seung-Ho Baek

Summary: This study successfully developed an efficient platform strain using Yarrowia lipolytica for the bioconversion of renewable resources into adipic acid, achieving a remarkable increase in production level.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae

Sefkan Kendir, Matthias Franzreb

Summary: This study presents a novel approach using magnetic separation to efficiently harvest freshwater microalgae, Chlorella vulgaris. By combining pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles, harvesting efficiencies up to 98% were achieved in the model medium.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Solvothermal liquefaction of orange peels into biocrude: An experimental investigation of biocrude yield and energy compositional dependency on process variables

Ishaq Kariim, Ji-Yeon Park, Wajahat Waheed Kazmi, Hulda Swai, In-Gu Lee, Thomas Kivevele

Summary: The impact of reaction temperature, residence time, and ethanol: acetone on the energy compositions and yield enhancement of biocrudes was investigated. The results showed that under appropriate conditions, biocrudes with high energy and low oxygen content can be obtained, indicating a high potential for utilization.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Enhancing nitrogen removal performance through intermittent aeration in continuous plug-flow anaerobic/aerobic/anoxic process treating low-strength municipal sewage

Xiyue Zhang, Xiyao Li, Liang Zhang, Yongzhen Peng

Summary: Intermittent aeration is an innovative approach to enhance nitrogen removal in low carbon-to-nitrogen ratio municipal sewage, providing an efficient strategy for the continuous plug-flow AOA process.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure

Xu Yang, Mahmoud Mazarji, Mengtong Li, Aohua Li, Ronghua Li, Zengqiang Zhang, Junting Pan

Summary: This study investigated the impact of magnetite on the nitrogen cycle of pig manure biostabilisation. The addition of magnetite increased N2O emissions and decreased NH3 emissions during composting. It also increased the total nitrogen content but should be considered for its significant increase in N2O emissions in engineering practice.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies

Ty Shitanaka, Haylee Fujioka, Muzammil Khan, Manpreet Kaur, Zhi-Yan Du, Samir Kumar Khanal

Summary: The market value of microalgae has exponentially increased in the past two decades, thanks to their applications in various industries. However, the supply of high-value microalgal bioproducts is limited due to several factors, and strategies are being explored to overcome these limitations and improve microalgae production, thus increasing the availability of algal-derived bioproducts in the market.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades

Martin Kerner, Thorsten Wolff, Torsten Brinkmann

Summary: The efficiency of using enriched CO2 from flue gas for large-scale production of green microalgae has been studied. The results show that the use of membrane devices and static mixers can effectively improve the CO2 recovery rate and maintain the suitable pH and temperature during cultivation, achieving a more economical and sustainable microalgae production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation

Rui Ma, Ji Li, Rd Tyagi, Xiaolei Zhang

Summary: This review summarizes the microorganisms capable of using CO2 and CH4 to produce PHAs, illustrating the production process, factors influencing it, and discussing optimization techniques. It identifies the challenges and future prospects for developing economically viable PHAs production using GHGs as a carbon source.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH3 and N2O emissions and increase of nitrate

Bing Wang, Peng Zhang, Xu Guo, Xu Bao, Junjie Tian, Guomin Li, Jian Zhang

Summary: The addition of zeolite in the co-composting of chicken manure and straw significantly reduced the emissions of ammonia and N2O, and increased the nitrate content. Zeolite also promoted the abundance of nitrification genes and inhibited the expression of denitrification genes.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor

Rohit Dey, Franziska Ortiz Tena, Song Wang, Josef Martin Messmann, Christian Steinweg, Claudia Thomsen, Clemens Posten, Stefan Leu, Matthias S. Ullrich, Laurenz Thomsen

Summary: This study investigated the operation of a 1000L microalgae-based membrane photobioreactor system for continuous secondary wastewater treatment. The research focused on a green microalgae strain called Desmodesmus sp. The study aimed to understand key trends and optimization strategies by conducting experiments in both summer and winter seasons. The findings showed that maintaining low cell concentrations during periods of light inhibition was beneficial for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling and adjusting dilution rates based on light availability.

BIORESOURCE TECHNOLOGY (2024)