4.8 Article

Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal, and hybrid pretreatment

Journal

BIORESOURCE TECHNOLOGY
Volume 340, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2021.125688

Keywords

Biogas production; Anaerobic co-digestion; Pretreatment techniques; Fruit-juice industrial waste; Municipal sewage sludge

Ask authors/readers for more resources

This study demonstrates that different pretreatment methods on fruit-juice industrial waste and municipal sewage sludge can have varied effects on co-digestion, with hybrid pretreatment including ultrasonication and alkali treatment showing the most promising results.
This study presents the effect of mechanical, chemical, thermal, and hybrid pretreatment on anaerobic digestion of fruit-juice industrial waste (FW) co-digested with municipal sewage sludge (MSS). The pretreatment of the substrates with ultrasonication, microwave, weak alkali-acid caused an increase in cumulative biogas production of approximately 20.9, 14.9, 8.1, and 5.2%, respectively. Beside this, thermal and strong acid-alkali pretreatment reduced biogas production. The highest cumulative biogas and methane yield was increased with hybrid pretreatment which contains ultrasonication (US) and alkali (AL) pretreatment by 36% and 49%, respectively. Also, compared to untreated mixture, the soluble COD, carbohydrate, and protein removal efficiencies were increased from 42.6% to 65.6%, 65.1% to 86.6%, and 17.3% to 62.4%, respectively for US-AL pretreatment. The kinetic parameters of cumulative biogas production for the selected reactors were further estimated with Monod, Cone, and Transference Function models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available