4.7 Article

Experimental study on thermal behavior of PCM-module coupled with various cooling strategies under different temperatures and protocols

Journal

APPLIED THERMAL ENGINEERING
Volume 197, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.117376

Keywords

Battery thermal management; Phase change material; Air cooling; Heat pipe

Funding

  1. National Key RAMP
  2. D Programs of China [2018YFC0809500]
  3. National Natural Science Foundation of China [51991352]
  4. Science and Technology Program of Fire and Rescue Department Ministry of Emergency Management [2020XFCX33]

Ask authors/readers for more resources

PCM cooling strategies in BTMS were studied under different protocols and ambient temperatures, showing weaker performance in constant-current mode and higher temperatures. A novel PCM cooling structure coupling copper-plate-enhanced heat pipe with PCM was proposed to improve secondary heat dissipation.
Phase change materials (PCMs) are widely used in battery thermal management system (BTMS). Most previous research on BTMS has focused on single temperature environment or protocol, without verifying their effectiveness in volatile working environments, which affects battery heat accumulation and dissipation. In this study, a series of experiments is first conducted to compare the thermal behaviors of battery thermal management modules with different protocols and ambient temperatures to determine the applicability of PCM cooling strategies in different operating conditions. The results show that the constant-current mode produces a smaller temperature fluctuation range but higher temperature, which weakens the effect of PCM cooling and accelerates its failure, especially in high-temperature environments. The PCM cooling technology fails at 1518 s at 54.0 degrees C in the 45 degrees C environment with constant current mode while it fails at 2969 s at 44.1 degrees C in the 35 degrees C environment. On this basis, we propose a novel PCM cooling structure coupling copper-plate-enhanced heat pipe with PCM to improve secondary heat dissipation, whose cooling performances are compared between forced convection and natural convection. These outcomes can provide a new reference and more insights into diverse application conditions and environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available