4.7 Article

Quantification of silver nanoparticle interactions with yeast Saccharomyces cerevisiae studied using single-cell ICP-MS

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 414, Issue 9, Pages 3077-3086

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-022-03937-4

Keywords

Silver nanoparticle; Yeast cell; Single-cell ICP-MS; Uptake of AgNP by yeast cell; Surface-adsorbed AgNP; Intracellular AgNP

Funding

  1. Perkin Elmer, Inc.

Ask authors/readers for more resources

This study developed a rapid and sensitive SC-ICP-MS method to study the interactions between silver nanoparticles (AgNPs) and yeast cells. The results showed that the initial uptake of AgNPs was rapid and mainly influenced by the mass of silver per cell. The study also validated a washing method for quantitatively determining the amount of cell surface-adsorbed AgNPs and intracellular AgNPs, and found that the mass ratios of intracellular vs cell surface-adsorbed AgNPs were similar for different AgNP sizes.
Silver nanoparticles (AgNPs) have been used in many fields due to their anticancer, antimicrobial, and antiviral potential. Single-cell ICP-MS (SC-ICP-MS) is an emerging technology that allows for the rapid characterization and quantification of a metal analyte across a cell population in a single analysis. In this study, a new rapid and sensitive SC-ICP-MS method was developed to quantitatively study the interactions of AgNPs with yeast Saccharomyces cerevisiae. The method can quantify the cell concentration, silver concentration per cell, and profile the nanoparticle distribution in a yeast cell population. AgNP dosing time, concentration, and AgNP size were quantitatively evaluated for their effects on AgNP-yeast cell interactions. The results showed that the initial uptake of AgNPs was rapid and primarily driven by the mass of Ag per cell. The optimal dosing particle concentrations for highest uptake were approximately 1820, 1000, and 300 AgNPs/cell for 10, 20, and 40 nm AgNPs, respectively. Furthermore, this study also validated a washing method for the application to a microorganism for the first time and was used to quantitatively determine the amount of cell surface-adsorbed AgNPs and intracellular AgNPs. These results indicated that the mass (Ag in ag/cell) ratios of intracelluar vs cell surface-adsorbed AgNPs were similar for different AgNP sizes. This high throughput and ultrasensitive SC-ICP-MS method is expected to have many potential applications, such as optimization of methods for green synthesis of AgNPs, nanotoxicity studies, and drug delivery. This is the first quantification study on the interactions of AgNPs and S. cerevisiae using SC-ICP-MS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available