4.6 Article

An enriched environment reduces chronic stress-induced visceral pain through modulating microglial activity in the central nucleus of the amygdala

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00307.2021

Keywords

abdominal pain; cognitive behavioral therapy (CBT); complement component 3; complement component C1q; irritable bowel syndrome (IBS)

Funding

  1. Department of Veterans Affairs as the recipient of a Senior Research Career Scientist Award [1IK6BX003610-01]

Ask authors/readers for more resources

This study demonstrates that environmental enrichment (EE) can reduce stress-induced visceral hypersensitivity, potentially by altering synaptic plasticity in the central nucleus of amygdala (CeA). These findings provide important insights into the therapeutic mechanisms underlying the effects of EE on visceral pain.
Cognitive behavioral therapy (CBT) improves the quality of life for patients with brain-gut disorders; however, the underlying mechanisms of CBT remain to be explored. Previously, we showed that environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, ameliorates chronic stress-induced visceral hypersensitivity in a rodent model via mechanisms involving altered activity in the central nucleus of amygdala (CeA). In the present study, we investigated whether microglia-mediated synaptic plasticity in the CeA is a potential mechanism underlying the protective effects of EE against stress induced visceral hypersensitivity. We stereotaxically implanted corticosterone (CORT) micropellets onto the dorsal margin of the CeA shown previously to induce colonic hypersensitivity. Animals were housed in EE cages or standard cages for 14 days after CORT implantation. Visceral sensitivity was assessed via visceromotor behavioral response to colorectal distension. Microglial morphology, microglia-mediated synaptic engulfment, and the expression of synaptic pruning-related signals complement component 1q (C1q), complement component 3 (C3), and C3 receptor (C3R) were measured using immunofluorescence and RNAscope assay. We found that housing CORT implanted rats in EE cages for 14 days attenuated visceral hypersensitivity in both male and female rats as compared with control rats maintained in standard housing. EE reduced CORT-induced microglial remodeling and microglia-mediated synaptic pruning with reduced C1q and CR3, but not C3, expression. Our data suggest that exposure to EE is sufficient to ameliorate stress-induced visceral pain via reducing amygdala microglia-modulated neuronal plasticity. NEW & NOTEWORTHY Clinical studies show that cognitive behavioral therapy (CBT) is effective in ameliorating visceral pain in patient with irritable bowel syndrome (IBS), yet the underlying mechanisms remain unexplored. By using environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, we demonstrated that microglia-mediated synaptic plasticity in the CeA explains, plays a role, at least in part, in the positive effects of EE to reduce visceral hypersensitivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available