4.8 Article

Influence of Plasmon Resonances and Symmetry Effects on Second Harmonic Generation in WS2-Plasmonic Hybrid Metasurfaces

Journal

ACS NANO
Volume 15, Issue 10, Pages 16719-16728

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.1c06693

Keywords

second-harmonic generation; transition-metal-dichalcogenide monolayer; 2D-materials; plasmonics; metasurface; TMD

Funding

  1. European Research Council (ERC) [724306]
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [TRR142/2-2020, 231447078]

Ask authors/readers for more resources

The study investigates how plasmonic dipole resonances impact the process of SHG in plasmonic-TMD hybrid metasurfaces, revealing that the polarization dependency is influenced by the lattice structure of plasmonic nanoantenna arrays and the relative orientation between 1L-WS2 and individual plasmonic nanoantennas. Moreover, hybrid metasurfaces exhibit SHG in polarization states where SHG is typically forbidden, achieving an enhancement of the SHG signal by more than 40 times.
The nonlinear process of second harmonic generation (SHG) in monolayer (1L) transition metal dichalcogenides (TMD), like WS2, strongly depends on the polarization state of the excitation light. By combination of plasmonic nanostructures with 1L-WS2 by transferring it onto a plasmonic nanoantenna array, a hybrid metasurface is realized impacting the polarization dependency of its SHG. Here, we investigate how plasmonic dipole resonances affect the process of SHG in plasmonic-TMD hybrid metasurfaces by nonlinear spectroscopy. We show that the polarization dependency is affected by the lattice structure of plasmonic nanoantenna arrays as well as by the relative orientation between the 1L-WS2 and the individual plasmonic nanoantennas. In addition, such hybrid metasurfaces show SHG in polarization states, where SHG is usually forbidden for either 1L-WS2 or plasmonic nanoantennas. By comparing the SHG in these channels with the SHG generated by the hybrid metasurface components, we detect an enhancement of the SHG signal by a factor of more than 40. Meanwhile, an attenuation of the SHG signal in usually allowed polarization states is observed. Our study provides valuable insight into hybrid systems where symmetries strongly affect the SHG and enable tailored SHG in 1L-WS2 for future applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available