4.5 Article

Reliability assessment of water structures subject to data scarcity using the SCS-CN model

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/02626667.2015.1027709

Keywords

uncertainty; first order reliability method (FORM); SCS; curve number; time of concentration; arid region

Ask authors/readers for more resources

When discharge measurements are not available, design of water structures relies on using frequency analysis of rainfall data and applying a rainfall-runoff model to estimate a hydrograph. The Soil Conservation Service (SCS) method estimates the design hydrograph first through a rainfall-runoff transformation and next by propagating runoff to the basin outlet via the SCS unit hydrograph (UH) method. The method uses two parameters, the Curve Number (CN) and the time of concentration (T-c). However, in data-scarce areas, the calibration of CN and T-c from nearby gauged watersheds is limited and subject to high uncertainties. Therefore, the inherent uncertainty/variability of the SCS parameters may have considerable ramifications on the safety of design. In this research, a reliability approach is used to evaluate the impact of incorporating the uncertainty of CN and T-c in flood design. The sensitivity of the probabilistic outcome against the uncertainty of input parameters is calculated using the First Order Reliability Method (FORM). The results of FORM are compared with the conventional SCS results, taking solely the uncertainty of the rainfall event. The relative importance of the uncertainty of the SCS parameters is also estimated. It is found that the conventional approach, used by many practitioners, might grossly underestimate the risk of failure of water structures, due to neglecting the probabilistic nature of the SCS parameters and especially the Curve Number. The most predominant factors against which the SCS-CN method is highly uncertain are when the average rainfall value is low (less than 20mm) or its coefficient of variation is not significant (less than 0.5), i.e. when the resulting rainfall at the design return period is low. A case study is presented for Egypt using rainfall data and CN values driven from satellite information, to determine the regions of acceptance of the SCS-CN method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available