4.6 Review

Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review

Journal

BIOLOGY-BASEL
Volume 10, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/biology10090881

Keywords

biosafety; disease control; essential oils; fungi; nanocarrier; nanoparticle; nanopesticides; nanotechnology

Categories

Funding

  1. Ministry of Higher Education Malaysia [LRGS/1/2019/UPM/01/2/2]

Ask authors/readers for more resources

Fungal pathogens are a major cause of crop losses, with nanotechnology offering potential solutions for reducing the negative impact of fungicides and improving their effectiveness in a sustainable and eco-friendly manner. Despite the advantages, commercial production of nanoparticle-based products for agricultural purposes remains limited, highlighting the need for further research and development in this area.
Simple Summary Fungal pathogens were reported to cause about 70-80% losses in yield. Nanotechnology can be a panacea to this problem by reducing the negative effect of the fungicides, enhancing the solubility of low water-soluble fungicides, and reducing their toxic effect in a sustainable and eco-friendly manner. This review focuses on the description, properties, and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of nanoparticles alone, or in the form of a nanocarrier for several fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications. Approximately 15-18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70-80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available