4.7 Article

Circulating Extracellular Vesicle Proteins and MicroRNA Profiles in Subcortical and Cortical-Subcortical Ischaemic Stroke

Journal

BIOMEDICINES
Volume 9, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/biomedicines9070786

Keywords

exosomes; extracellular vesicles; ischaemic stroke; miRNA; proteomic analysis

Funding

  1. Carlos III Health Institute Health Care Research Fund [CP15/00069, CPII20/00002, CP20/00024, FI17/00188, FI18/00026, CD19/00033, CM20/00047]
  2. European Regional Development Fund (ERDF)

Ask authors/readers for more resources

This study found that circulating EV proteins and microRNAs in patients with ischaemic stroke could serve as markers for different processes such as neurite outgrowth, neurogenesis, inflammation, and atherosclerosis, depending on the location and type of involvement.
In order to investigate the role of circulating extracellular vesicles (EVs), proteins, and microRNAs as damage and repair markers in ischaemic stroke depending on its topography, subcortical (SC), and cortical-subcortical (CSC) involvement, we quantified the total amount of EVs using an enzyme-linked immunosorbent assay technique and analysed their global protein content using proteomics. We also employed a polymerase chain reaction to evaluate the circulating microRNA profile. The study included 81 patients with ischaemic stroke (26 SC and 55 CSC) and 22 healthy controls (HCs). No differences were found in circulating EV levels between the SC, CSC, and HC groups. We detected the specific expression of C1QA and Casp14 in the EVs of patients with CSC ischaemic stroke and the specific expression of ANXA2 in the EVs of patients with SC involvement. Patients with CSC ischaemic stroke showed a lower expression of miR-15a, miR-424, miR-100, and miR-339 compared with those with SC ischaemic stroke, and the levels of miR-339, miR-100, miR-199a, miR-369a, miR-424, and miR-15a were lower than those of the HCs. Circulating EV proteins and microRNAs from patients with CSC ischaemic stroke could be considered markers of neurite outgrowth, neurogenesis, inflammation process, and atherosclerosis. On the other hand, EV proteins and microRNAs from patients with SC ischaemic stroke might be markers of an anti-inflammatory process and blood-brain barrier disruption reduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available