4.8 Article

Electromagnetic interference shielding of 3D-printed graphene-polyamide-6 composites with 3D-printed morphology

Journal

ADDITIVE MANUFACTURING
Volume 43, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.addma.2021.102020

Keywords

Graphene; Polyamide-6; Electromagnetic interference shielding; Dielectric properties; Polymer-matrix composites (PMCs)

Ask authors/readers for more resources

The thickness of the sample does not have a large impact on EMI SE, while internal geometric designs can significantly improve it. The electromagnetic response of 3D-printed GC is limited by geometric accuracy and printing methods, particularly in replicating complex geometries.
Graphene-polyamide-6 composite (GC) filament was 3D-printed via melt extrusion (ME). The influence of specimen thickness and internal geometric designs on electromagnetic interference shielding effectiveness (EMI SE) and dielectric properties in the X-band frequency range (8.2-12.4 GHz) was investigated. Increasing specimen thickness from 1 to 5 mm did not improve EMI SE due to impedance matching and the associated reductions in electromagnetic (EM) wave reflection. It was demonstrated that the introduction of suitable internal geometric assemblies avoided impedance matching and significantly improved EMI SE. A material model for simulating EM response of 3D-printed GC was developed and experimentally verified. It was found that different internal geometric designs each displayed unique EM responses. However, geometrical inaccuracies in printed specimens resulted in differences between experimental EM response and that predicted by simulations. These inaccuracies stem from the small size of the features relative to the printer resolution and the ME printing methodology. Therefore, the limitations of a printer when replicating complex geometries must be considered to effectively apply internal geometric designs for enhancing EMI SE of 3D-printed components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available