4.6 Article

Location and Expansion of Electric Bus Charging Stations Based on Gridded Affinity Propagation Clustering and a Sequential Expansion Rule

Journal

SUSTAINABILITY
Volume 13, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/su13168957

Keywords

charging stations; AP clustering; charging demand; sequential expansion

Funding

  1. Growth Project of Young Scientific Talent of the Department of Education of Guizhou Province [Qian jiao he KY zi [2018]159]

Ask authors/readers for more resources

The growing demand for electric buses and limited resources for deploying electric charging infrastructure pose a big challenge for decision-makers. Planning the locations and expansion sequence of electric charging stations is crucial due to its impacts on bus deployment and city traffic networks. Combining factors like land resources, capital investment, and grid load is essential to provide decision support for station location.
With the escalating contradiction between the growing demand for electric buses and limited supporting resources of cities to deploy electric charging infrastructure, it is a great challenge for decision-makers to synthetically plan the location and decide on the expansion sequence of electric charging stations. In light of the location decisions of electric charging stations having long-term impacts on the deployment of electric buses and the layout of city traffic networks, a comprehensive framework for planning the locations and deciding on the expansion of electric bus charging stations should be developed simultaneously. In practice, construction or renovation of a new charging station is limited by various factors, such as land resources, capital investment, and power grid load. Thus, it is necessary to develop an evaluation structure that combines these factors to provide integrated decision support for the location of bus charging stations. Under this background, this paper develops a gridded affinity propagation (AP) clustering algorithm that combines the superiorities of the AP clustering algorithm and the map gridding rule to find the optimal candidate locations for electric bus charging stations by considering multiple impacting factors such as land cost, traffic conditions, and so on. Based on the location results of the candidate stations, the expansion sequence of these candidate stations is proposed. In particular, a sequential expansion rule for planning the charging stations is proposed that considers the development trends of the charging demand. To verify the performance of the gridded AP clustering and the effectiveness of the proposed sequential expansion rule, an empirical investigation of Guiyang City, the capital of Guizhou province in China, is conducted. The results of the empirical investigation demonstrate that the proposed framework that helps find optimal locations for electric bus charging stations and the expansion sequence of these locations are decided with less capital investment pressure. This research shows that the combination of gridded AP clustering and the proposed sequential expansion rule can systematically solve the problem of finding the optimal locations and deciding on the best expansion sequence for electric bus charging stations, which denotes that the proposed structure is pretty pragmatic and would benefit the government for long-term investment in electric bus station deployment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available